Computer Science

Core-1 (Digital Logic)

Fill in the Blanks (ALL Units)

1. The basic building block of digital circuits is called a \qquad Answer: Gate
2. A logic gate that performs the NOT operation is called a \qquad gate. Answer: NOT
3. The Boolean expression for the AND gate is \qquad Answer: A * B
4. In binary, the value represented by 1010 is equal to \qquad in decimal. Answer: 10
5. The output of an OR gate is HIGH when \qquad or more inputs are HIGH. Answer: One
6. A \qquad gate is used to add two binary numbers. Answer: Half Adder
7. The binary number system is a \qquad -based number system. Answer: 2
8. The basic operations in Boolean algebra are AND, OR, and \qquad . Answer: NOT
9. A flip-flop is a bistable multivibrator that can store \qquad bit(s) of data. Answer: 1
10. The NOR gate is equivalent to an OR gate followed by a \qquad gate. Answer: NOT
11. In a \qquad flip-flop, the output changes on the falling edge of the clock signal.
Answer: D
12. A \qquad is used to represent data storage in sequential circuits. Answer: Flip-flop
13. In a 2-input XOR gate, the output is HIGH when \qquad inputs are different. Answer: Both
14. A half adder can add two binary digits and produce \qquad and \qquad outputs. Answer: Sum, Carry
15. The output of a NOT gate is the \qquad of its input. Answer: Inversion
16. A \qquad circuit can store one bit of data. Answer: Flip-flop
17. A full adder can add two binary digits and account for any \qquad from previous stages. Answer: Carry
18. A \qquad gate has a single input and a single output. Answer: NOT
19. In a binary number, the rightmost bit is called the \qquad bit. Answer: Least Significant
20. The output of an AND gate is HIGH only when ____ inputs are HIGH. Answer: All
21. A multiplexer has \qquad data inputs and \qquad select inputs. Answer: Many, Few
22. A \qquad flip-flop has two inputs: a data input and a clock input. Answer: \qquad
23. A \qquad gate is also known as an inverter. Answer: NOT
24. The sum output of a full adder is calculated as \qquad XOR \qquad XOR \qquad .
Answer: A XOR B XOR Cin
25. A \qquad gate is used to generate the complement of a binary number. Answer: NOT
26. The output of a XOR gate is HIGH when \qquad inputs are different. Answer: Both
27. In binary, the value represented by 1111 is equal to \qquad in decimal. Answer: 15
28. A \qquad circuit can store multiple bits of data. Answer: Register
29. A multiplexer with 4 data inputs will have \qquad select lines. Answer: 2
30. The operation of a flip-flop can be controlled by a clock signal and \qquad inputs.
Answer: Data
31. A \qquad gate performs the OR operation on two or more inputs. Answer: OR
32. A \qquad gate can be used to implement addition in binary arithmetic. Answer: XOR
33. The binary number system uses only two digits, which are \qquad and \qquad ـ. Answer: 0, 1
34. A \qquad gate performs the NOT operation. Answer: NOT
35. In binary, the value represented by 1100 is equal to \qquad in decimal. Answer: 12
36. The output of a NOR gate is LOW when \qquad inputs are HIGH. Answer: Any
37. In a 2-input XOR gate, the output is LOW when \qquad inputs are the same. Answer: Both
38. A \qquad flip-flop is used to store one bit of data. Answer: D
39. A \qquad gate performs the AND operation on two or more inputs. Answer: AND
40. In a half adder, the carry output is generated when \qquad inputs are HIGH. Answer: Both
41. The output of a NAND gate is LOW only when \qquad inputs are HIGH. Answer: All
42. A multiplexer with 8 data inputs will have \qquad select lines. Answer: 3
43. The \qquad flip-flop is the most basic type of flip-flop. Answer: SR
44. In binary, the value represented by 1001 is equal to \qquad in decimal. Answer: 9
45. A ___ circuit can perform arithmetic and logical operations. Answer: ALU (Arithmetic Logic Unit)
46. A full adder has \qquad inputs and \qquad outputs. Answer: 3, 2
47. A \qquad gate performs the OR operation on two inputs. Answer: OR
48. The sum output of a full adder is calculated as \qquad XOR \qquad XOR \qquad .
Answer: A XOR B XOR Cin
49. In a binary number, the leftmost bit is called the \qquad bit. Answer: Most Significant
50. A \qquad gate can be used to generate the complement of a binary number. Answer: NOT
51. The output of an XOR gate is HIGH when \qquad inputs are different. Answer: Both
52. In binary, the value represented by 1011 is equal to \qquad in decimal. Answer: 11
53. A \qquad circuit can store multiple bits of data. Answer: Register
54. A multiplexer with 16 data inputs will have \qquad select lines. Answer: 4
55. The operation of a flip-flop can be controlled by a clock signal and \qquad inputs.
Answer: Data
56. A \qquad gate performs the AND operation on two inputs. Answer: AND
57. A \qquad gate can be used to implement addition in binary arithmetic. Answer: XOR
58. The binary number system uses only two digits, which are \qquad and \qquad . Answer: 0, 1
59. A \qquad gate performs the NOT operation. Answer: NOT
60. In binary, the value represented by 1101 is equal to \qquad in decimal. Answer: 13
61. The output of a NOR gate is LOW when \qquad inputs are HIGH. Answer: Any
62. In a 2-input XOR gate, the output is LOW when \qquad inputs are the same. Answer:
Both
63. A \qquad flip-flop is used to store one bit of data. Answer: D
64. A \qquad gate performs the AND operation on two inputs. Answer: AND
65. In a half adder, the carry output is generated when \qquad inputs are HIGH. Answer:
Both
66. The output of a NAND gate is LOW only when \qquad inputs are HIGH. Answer: All
67. A multiplexer with 8 data inputs will have \qquad select lines. Answer: 3
68. The \qquad flip-flop is the most basic type of flip-flop. Answer: SR
69. In binary, the value represented by 1000 is equal to \qquad in decimal. Answer: 8
70. A \qquad circuit can perform arithmetic and logical operations. Answer: ALU
(Arithmetic Logic Unit)
71. A full adder has \qquad inputs and \qquad outputs. Answer: 3, 2
72. A ___ gate performs the OR operation on two inputs. Answer: OR
73. The sum output of a full adder is calculated as \qquad XOR \qquad XOR \qquad . Answer: A XOR B XOR Cin
74. In a binary number, the leftmost bit is called the \qquad bit. Answer: Most Significant
75. A \qquad gate can be used to generate the complement of a binary number. Answer: NOT
76. The output of an XOR gate is HIGH when \qquad inputs are different. Answer: Both
77. In binary, the value represented by 1011 is equal to \qquad in decimal. Answer: 11
78. A \qquad circuit can store multiple bits of data. Answer: Register
79. A multiplexer with 16 data inputs will have \qquad select lines. Answer: 4
80. The operation of a flip-flop can be controlled by a clock signal and \qquad inputs.

Answer: Data

81. A \qquad gate performs the AND operation on two inputs. Answer: AND
82. A \qquad gate can be used to implement addition in binary arithmetic. Answer: XOR
83. The binary number system uses only two digits, which are \qquad and \qquad .
Answer: 0, 1
84. A ___ gate performs the NOT operation. Answer: NOT
85. In binary, the value represented by 1101 is equal to \qquad in decimal. Answer: 13
86. The output of a NOR gate is LOW when \qquad inputs are HIGH. Answer: Any
87. In a 2-input XOR gate, the output is LOW when \qquad inputs are the same. Answer:

Both

88. A \qquad flip-flop is used to store one bit of data. Answer: D
89. A \qquad gate performs the AND operation on two inputs. Answer: AND
90. In a half adder, the carry output is generated when \qquad inputs are HIGH. Answer: Both
91. The output of a NAND gate is LOW only when \qquad inputs are HIGH. Answer: All
92. A multiplexer with 8 data inputs will have \qquad select lines. Answer: 3
93. The \qquad flip-flop is the most basic type of flip-flop. Answer: SR
94. In binary, the value represented by 1000 is equal to \qquad in decimal. Answer: 8
95. A \qquad circuit can perform arithmetic and logical operations. Answer: ALU
(Arithmetic Logic Unit)
96. A full adder has \qquad inputs and \qquad outputs. Answer: 3, 2
97. A \qquad gate performs the OR operation on two inputs. Answer: OR
98. The sum output of a full adder is calculated as \qquad XOR \qquad XOR \qquad .

Answer: A XOR B XOR Cin

99. In a binary number, the leftmost bit is called the \qquad bit. Answer: Most Significant
100. A \qquad gate can be used to generate the complement of a binary number. Answer:
NOT

Fill in the Blanks Unit wise

Character Codes:

1. Character codes represent characters as \qquad . Answer: Numbers
2. ASCII stands for \qquad . Answer: American Standard Code for Information Interchange
3. Extended ASCII uses \qquad bits to represent characters. Answer: 8
4. Unicode is a character encoding that uses \qquad bits for encoding characters.
Answer: 16
5. EBCDIC is a character encoding used in \qquad mainframe computers. Answer: IBM

Decimal System:

6. The decimal system is a \qquad -base number system. Answer: 10
7. In the decimal system, each digit can have values from \qquad to \qquad Answer: 0, 9
8. The rightmost digit in a decimal number has a \qquad value. Answer: Ones
9. The decimal number 1234 is equivalent to $\left(1^{*} 10^{\wedge} 3\right)+\left(2\right.$ * $\left.10^{\wedge} 2\right)+\left(3\right.$ * $\left.10^{\wedge} 1\right)+(4$ * $10^{\wedge} 0$) in \qquad notation. Answer: Exponential
10. Decimal numbers can be represented using digits from \qquad to \qquad Answer: 0, 9

Binary System:

11. The binary system is a \qquad -base number system. Answer: 2
12. In the binary system, each digit can have values of \qquad or \qquad . Answer: 0, 1
13. The rightmost digit in a binary number has a \qquad value. Answer: Ones
14. The binary number 1010 is equivalent to $\left(1 * 2^{\wedge} 3\right)+\left(0 * 2^{\wedge} 2\right)+\left(1^{*} 2^{\wedge} 1\right)+\left(0 * 2^{\wedge} 0\right)$ in ____ notation. Answer: Exponential
15. Binary numbers are commonly used in \qquad circuits and digital systems. Answer:
Digital

Decimal to Binary Conversion:

16. Decimal to binary conversion involves repeatedly \qquad the decimal number. Answer:

Dividing

17. When converting a decimal number to binary, the remainders are read \qquad to
\qquad
18. The binary equivalent of the decimal number 12 is \qquad Answer: 1100
19. The binary equivalent of the decimal number 25 is \qquad Answer: 11001
20. The binary equivalent of the decimal number 7 is \qquad . Answer: 111

Hexadecimal Notation:

21. Hexadecimal is a \qquad -base number system. Answer: 16
22. In hexadecimal notation, the digits from 10 to 15 are represented as \qquad to
\qquad . Answer: A, F
23. The hexadecimal digit ' C ' is equivalent to \qquad in decimal. Answer: 12
24. The hexadecimal digit ' 7 ' is equivalent to \qquad in binary. Answer: 0111
25. Hexadecimal numbers are commonly used in computer programming and \qquad representation.

Boolean Algebra:

26. Boolean algebra deals with \qquad variables and logic operations. Answer: Binary
27. Boolean variables can have values of \qquad or \qquad . Answer: 0, 1
28. The basic logic operations in Boolean algebra are \qquad
\qquad and \qquad .
Answer: AND, OR, NOT
29. The complement of a Boolean variable ' A ' is denoted as \qquad . Answer: A^{\prime}
30. Boolean algebra is fundamental in the design of \qquad circuits and digital systems. Answer: Logic

Addition and Subtraction of Signed Numbers:

1. When adding or subtracting signed numbers, the leftmost bit is often used as the bit. Answer: Sign
2. Two numbers with the same sign that are added together may produce \qquad overflow. Answer: Positive
3. In two's complement representation, the leftmost bit is the \qquad bit. Answer: Most significant
4. To subtract one number from another in two's complement form, you can add the
\qquad of the second number. Answer: Two's complement
5. Overflow occurs in signed addition when the carry into the sign bit and the carry out of the sign bit are \qquad . Answer: Different

Addition/ Subtraction Logic Unit:

6. The Arithmetic Logic Unit (ALU) is responsible for performing \qquad and \qquad operations. Answer: Addition, subtraction
7. ALUs typically have \qquad inputs and \qquad outputs. Answer: Two, one
8. In a binary ALU, XOR gates are used to perform \qquad . Answer: Bitwise addition
9. The ALU operation for subtraction is often implemented using \qquad addition.
Answer: Two's complement
10. The \qquad signal is used to select the operation mode of the ALU. Answer: Control

Design of Fast Adders: Carry-Lookahead Addition:

11. Carry-lookahead addition reduces \qquad propagation delay in adders. Answer: Carry
12. A carry-lookahead adder predicts carries based on the \qquad inputs. Answer: Sum and carry-in
13. The carry-lookahead adder consists of \qquad blocks. Answer: Ripple-carry
14. In a carry-lookahead adder, \qquad and \qquad signals are generated independently of each other. Answer: Carry-in, carry-out
15. The carry-lookahead adder is faster than a \qquad -carry adder. Answer: Ripple

Multiplication of Positive Numbers:

16. Multiplying two n-bit numbers results in an \qquad -bit product. Answer: $2 n$
17. The basic multiplication operation is based on \qquad and \qquad Answer: Addition, shifting
18. In binary multiplication, multiplying by $2^{\wedge} n$ is equivalent to \qquad the number n positions to the left. Answer: Shifting
19. The multiplication of two n-bit numbers requires \qquad iterations of basic multiplication. Answer: n
20. The result of binary multiplication is obtained by \qquad partial products. Answer: Adding

Signed-Operand Multiplication: Booth Algorithm:

21. The Booth algorithm is used for \qquad signed-operand multiplication. Answer: Efficient
22. Booth's algorithm reduces the number of \qquad in multiplication. Answer: Partial products
23. Booth encoding classifies patterns in groups of \qquad Answer: Three
24. Booth encoding is based on identifying \qquad and \qquad patterns in binary numbers. Answer: Zero, one
25. Booth's algorithm is particularly efficient for operands with \qquad 1s. Answer: Sparse

Fast Multiplication: Bit-Pair Recording Multipliers:

26. Bit-pair recording multipliers reduce the number of \qquad in multiplication. Answer: Partial products
27. In bit-pair recording, a 0-1 pair generates a partial product of \qquad Answer: Zero
28. Bit-pair recording multipliers use a \qquad tree to accumulate partial products. Answer: Wallace
29. Bit-pair recording multipliers are efficient for \qquad operands. Answer: Sparse
30. The bit-pair recording multiplier reduces the number of \qquad required for multiplication. Answer: Additions

Flip-Flops and Latches:

1. A flip-flop is a bistable multivibrator that can store \qquad bit(s) of data. Answer: 1
2. Gated latches are level-sensitive and require a \qquad signal to change their state. Answer: Enable
3. Master-slave flip-flops are constructed using two \qquad flip-flops. Answer: D
4. Edge-triggering in flip-flops occurs on the \qquad edge of a clock signal. Answer: Rising or falling
5. T flip-flops toggle their output state when the T input is \qquad Answer: High (1)
6. JK flip-flops have three inputs: J, K, and a \qquad input. Answer: Clock

Registers and Shift Registers:

7. Registers are groups of \qquad flip-flops used for data storage. Answer: Sequential
8. A shift register can shift data either to the \qquad or to the right. Answer: Left
9. Counters can be implemented using \qquad registers. Answer: Shift
10. In a shift register, serial data can be shifted in or out through the \qquad Answer: Serial input/output

Decoders and Multiplexers:

11. A decoder takes an \qquad input and activates one of its output lines. Answer: N -bit binary
12. Multiplexers are used to select one of \qquad inputs and route it to the output. Answer: Many
13. The number of select lines in a multiplexer is equal to \qquad of its input lines. Answer: The base-2 logarithm
14. A 4-to-1 multiplexer has \qquad select lines. Answer: 2

Programmable Logic Devices (PLDs):

15. PLD stands for \qquad . Answer: Programmable Logic Device
16. Programmable Array Logic (PAL) devices are an example of \qquad PLDs. Answer: Simple
17. Complex Programmable Logic Devices (CPLDs) are capable of implementing more
\qquad logic functions. Answer: Complex
18. Field-Programmable Gate Arrays (FPGAs) consist of a large number of configurable
\qquad . Answer: Logic blocks

Sequential Circuits and Counters:

19. Sequential circuits include both \qquad and combinational logic. Answer: Memory elements
20. Up/down counters can count both \qquad and \qquad . Answer: Up, down
21. Timing diagrams are used to represent the \qquad of signals in a circuit. Answer: Timing relationships

Finite State Machines and Synthesis:
22. Finite State Machines (FSMs) model systems with \qquad behavior. Answer: Sequential
23. In an FSM, states are connected by \qquad Answer: Transitions
24. The synthesis of Finite State Machines involves designing the \qquad and \qquad .
Answer: State diagram, state table
25. A state in an FSM represents a unique \qquad of the system. Answer: Condition
26. The input combinations and their corresponding state transitions are defined in the
\qquad . Answer: State transition table
27. In the Finite State Machine model, outputs are associated with \qquad states. Answer: Present
28. FSM synthesis results in a network of \qquad and logic gates. Answer: Flip-flops
29. In FSMs, a clock signal is used to synchronize the state transitions and ensure \qquad . Answer: Timing integrity
30. A Finite State Machine can be implemented using hardware, software, or a combination of both, known as a \qquad FSM. Answer: Mixed

Semiconductor RAM Memories:

1. RAM stands for Random Access \qquad Answer: Memory
2. In semiconductor RAM memories, each memory cell typically stores \qquad bits of data. Answer: 1
3. The most common types of semiconductor RAM memories are DRAM (Dynamic RAM) and \qquad (Static RAM). Answer: SRAM
4. DRAM cells require \qquad refreshing to maintain their data. Answer: Periodic
5. SRAM is faster and consumes \qquad power compared to DRAM. Answer: More

Internal Organization of Memory Chips:

6. Memory chips are organized into \qquad and columns of memory cells. Answer: Rows
7. The intersection of a row and a column in a memory chip is called a \qquad Answer: Memory cell
8. The size of a memory chip is often specified in terms of its \qquad capacity. Answer: Storage
9. Memory chips can be accessed in a \qquad fashion, allowing for quick data retrieval. Answer: Random
10. The internal organization of a memory chip affects its \qquad and speed. Answer: Size

Static Memories:

11. SRAM is known for its \qquad speed and stability. Answer: High
12. Unlike DRAM, SRAM does not require \qquad Answer: Refreshing
13. SRAM cells are typically made up of \qquad transistors. Answer: 6
14. SRAM is commonly used in \qquad caches in computer systems. Answer: CPU
15. Static memories are often used in applications where \qquad is critical. Answer: Speed

Asynchronous DRAMs:

16. Asynchronous DRAMs do not use a \qquad signal for synchronization. Answer: Clock
17. Refreshing of data is required in \qquad DRAMs. Answer: Asynchronous
18. \qquad DRAMs are slower than their synchronous counterparts. Answer: Asynchronous
19. Asynchronous DRAMs are commonly used in older computer \qquad . Answer: Systems
20. Asynchronous DRAMs have a \qquad interface for data access. Answer: Parallel

Synchronous DRAMs:

21. Synchronous DRAMs use a \qquad signal to synchronize data transfers. Answer: Clock
22. The clock signal in Synchronous DRAMs ensures \qquad and reliable data access. Answer: Synchronized
23. Synchronous DRAMs are commonly denoted as \qquad . Answer: SDRAM
24. SDRAMs are often used in modern \qquad and laptops. Answer: PCs
25. Synchronous DRAMs offer ____ data transfer rates compared to asynchronous DRAMs. Answer: Higher

Structure of Large Memories:

26. Large memory systems often use multiple smaller memory \qquad Answer: Modules
27. Memory modules are typically connected to a \qquad bus. Answer: Memory
28. Memory modules are organized into ranks to improve \qquad . Answer: Performance
29. The structure of large memories involves addressing and \qquad schemes. Answer: Interleaving
30. Memory system architects consider factors like \qquad size, and cost when designing large memory systems. Answer: Speed

Short Type Question Answer

Character Codes:

1. What is ASCII?

- ASCII stands for American Standard Code for Information Interchange. It's a character encoding standard for representing text and control characters using 7 or 8 bits.

2. What is Unicode?

- Unicode is a character encoding standard that aims to represent every character from every language in the world, including symbols and emojis.

Decimal System:

3. How many digits are in the decimal system?

- The decimal system has 10 digits, from 0 to 9.

4. What is the place value of the rightmost digit in a decimal number?

- The rightmost digit in a decimal number has a place value of 1 .

Binary System:

5. How many digits are in the binary system?

- The binary system has 2 digits, 0 and 1 .

6. What is the place value of the rightmost digit in a binary number?

- The rightmost digit in a binary number has a place value of 1 .

Decimal to Binary Conversion:

7. How do you convert the decimal number 10 to binary?

- $\quad 10$ in binary is 1010 .

8. How do you convert the decimal number 25 to binary?

- $\quad 25$ in binary is 11001 .

Hexadecimal Notation:

9. What is hexadecimal notation?

- Hexadecimal notation is a base-16 numbering system that uses digits 0-9 and letters A-F to represent values.

10. What is the decimal equivalent of the hexadecimal number 1A?

- \quad The decimal equivalent of 1 A in hexadecimal is 26 .

Boolean Algebra:

11. What is Boolean algebra?

- Boolean algebra is a mathematical system for working with binary variables and logic operations, such as AND, OR, and NOT.

12. What is the complement of a Boolean variable?

- The complement (NOT) of a Boolean variable A is denoted as $\neg A$ or A^{\prime}.

Electronic Logic Gates:

13. What is an AND gate?

- An AND gate performs a logical AND operation and outputs true (1) only if all its inputs are true.

14. What is an OR gate?

- An OR gate performs a logical OR operation and outputs true (1) if at least one of its inputs is true.

Synthesis of Logic Functions:

15. What is logic function synthesis?

- Logic function synthesis is the process of creating complex logic functions from simpler ones using logic gates.

16. How do you create an XOR gate using basic gates?

- An XOR gate can be created using OR, AND, and NOT gates: $\mathrm{XOR}=(\mathrm{A} A N D \neg B)$ OR (\neg A AND B).

Minimization of Logic Expressions:

17. What is the goal of logic expression minimization?

- The goal is to reduce the number of logic gates required to implement a given logic function.

18. What is the term used for the smallest unit of a logic expression?

- The term used is a "minterm" or "maxterm" depending on whether it's a sum-of-products or product-of-sums expression.

Minimization using Karnaugh Maps:

19. What is a Karnaugh map?

- A Karnaugh map is a graphical representation used to simplify Boolean expressions and minimize logic circuits.

20. How many cells can a 2 -variable Karnaugh map have?

- A 2 -variable Karnaugh map can have 4 cells.

Synthesis with NAND and NOR Gates:

21. What are NAND and NOR gates?

- NAND and NOR gates are universal gates, meaning they can be used to implement any other gate.

22. How do you create an AND gate using NAND gates?

- An AND gate can be created using NAND gates by connecting two NAND gates in series.

Tri-State Buffers:

23. What is a tri-state buffer?

- A tri-state buffer is a digital logic gate that can assume one of three output states: high, low, or high-impedance (disconnected).

24. When is a tri-state buffer typically used?

- Tri-state buffers are used in bus systems to control the flow of data on a shared bus.

Arithmetic: Addition and Subtraction of Signed Numbers:

25. What is the Two's Complement representation?

- Two's Complement is a method for representing signed integers in binary, making addition and subtraction simpler.

26. How do you add two binary numbers in Two's Complement form?

- Add the numbers as if they were unsigned, and discard any carry out of the most significant bit.

Addition/Subtraction Logic Unit:

27. What is an ALU (Arithmetic Logic Unit)?

- An ALU is a digital circuit within a computer's CPU that performs arithmetic and logic operations.

28. What is the purpose of the carry flag in an ALU?

- The carry flag is set if an arithmetic operation generates a carry or borrow, indicating overflow.

Design of Fast Adders: Carry-Lookahead Addition:

29. What is carry-lookahead addition?

- Carry-lookahead addition is a method to speed up addition by generating carry signals in parallel.

30. How does carry-lookahead differ from ripple-carry addition?

- Carry-lookahead generates carry signals in parallel, while ripple-carry propagates carry from one bit to the next.

Multiplication of Positive Numbers:

31. How do you multiply two binary numbers?

- Use a series of shifts and additions to multiply two binary numbers.

32. What is the result of multiplying any number by 0 in binary?

- The result is always 0 , as in any base.

Signed Operand Multiplication: Booth Algorithm:

33. What is the Booth Algorithm used for?

- The Booth Algorithm is used for efficient multiplication of signed binary numbers.

34. How does the Booth Algorithm work?

- It reduces the number of additions by using a sliding window approach to handle groups of consecutive 1 s or 0 s in the multiplier.

Fast Multiplication: Bit-Pair Recording Multipliers:

35. What is a bit-pair recording multiplier?

- It's a multiplication algorithm that reduces the number of partial products by recording pairs of bits in the multiplier.

36. How does bit-pair recording improve multiplication?

- It reduces the number of partial products and, therefore, the number of additions needed.

Carry-Save Addition of Summands:

37. What is carry-save addition?

- Carry-save addition is a method used to add multiple numbers in parallel, reducing carry propagation delay.

38. When is carry-save addition commonly used?

- It's used in the accumulation phase of digital signal processing algorithms.

Integer Division:

39. What is integer division?

- Integer division is the process of dividing one integer by another, discarding any fractional part.

40. What happens when you divide by zero in integer division?

- Division by zero is undefined in integer division and typically results in an error.

Floating-Point Numbers and Operations: IEEE Standard for Floating-Point Numbers:
41. What is the IEEE standard for floating-point numbers?

- The IEEE 754 standard defines the representation and operations of floatingpoint numbers in computing.

42. How are floating-point numbers represented in IEEE 754?

- They are represented with three parts: sign bit, exponent, and fraction (mantissa).

Arithmetic Operations on Floating-Point Numbers:

43. What arithmetic operations can be performed on floating-point numbers?

- You can perform addition, subtraction, multiplication, and division on floatingpoint numbers.

44. What is the result of adding infinity to a finite number in IEEE 754?

- The result is positive or negative infinity, depending on the signs.

Guard Bits and Truncation:

45. What are guard bits in floating-point operations?

- Guard bits are extra bits used to ensure accuracy during intermediate calculations.

46. What is truncation in floating-point arithmetic?

- Truncation involves rounding or chopping off extra bits beyond a certain precision.

Implementing Floating-Point Operations:

47. How are floating-point operations implemented in hardware?

- They are implemented using specialized circuits or software libraries that adhere to IEEE 754 standards.

Flip-Flops:

48. What is a flip-flop?

- A flip-flop is a sequential logic circuit element used to store binary information.

49. How does a D flip-flop differ from a T flip-flop?

- A D flip-flop has a data input, while a T flip-flop toggles its state based on a clock signal.

Gated Latches:

50. What is a gated latch?

- A gated latch is a sequential circuit that stores data when enabled by a control signal.

51. What is the key difference between a latch and a flip-flop?

- Latches are level-sensitive and can change their output as long as the enable signal is active, while flip-flops are edge-triggered and change only on clock edges.

Master-Slave Flip-Flops:

52. What is a master-slave flip-flop?

- A master-slave flip-flop consists of two interconnected flip-flops, one master and one slave, which provide improved timing characteristics.

53. Why are master-slave flip-flops used?

- They help eliminate glitches and improve stability in sequential circuits.

Edge-Triggering:

54. What is edge-triggering in flip-flops?

- Edge-triggering means that a flip-flop's output changes only on a specific edge (rising or falling) of the clock signal.

55. How does edge-triggering improve flip-flop performance?

- It reduces the chance of glitches and ensures consistent behavior.

T Flip-Flops:

56. What is a T flip-flop?

- A T flip-flop toggles its output state when the clock signal transitions from one edge to another, based on the T (toggle) input.

57. How can you use T flip-flops to divide a clock frequency by 2?

- Connect the output of one T flip-flop to the T input of another in a chain.

JK Flip-Flops:

58. What is a JK flip-flop?

- A JK flip-flop is a type of flip-flop that can serve as a T flip-flop, SR flip-flop, or D flip-flop depending on its inputs.

59. What is the J-K input in a JK flip-flop used for?

- The J-K input controls whether the flip-flop toggles, resets, or sets when clocked.

Registers and Shift Registers:

60. What is a register?

- A register is a group of flip-flops used to store binary data temporarily.

61. What is a shift register?

- A shift register is a type of register that can shift data in or out serially.

Counters:
62. What is a counter in digital electronics?

- A counter is a sequential circuit that counts, either up or down, based on clock pulses.

63. What is a decade counter?

- A decade counter is a counter that counts from 0 to 9 and then resets, commonly used in BCD applications.

Decoders:

64. What is a decoder?

- A decoder is a combinational logic circuit that converts a binary code into a set of output lines.

65. How many output lines does a 3-to-8 decoder have?

- A 3-to-8 decoder has 8 output lines.

Multiplexers:

66. What is a multiplexer (MUX)?

- A multiplexer is a combinational circuit that selects one of many input lines and forwards it to a single output line.

67. How is the selection of input in a multiplexer determined?

- It's determined by the values of select lines or control inputs.

Programmable Logic Devices (PLDs):

68. What are Programmable Logic Devices (PLDs)?

- PLDs are digital devices that can be programmed to perform custom logic functions.

69. What is a common type of PLD?

- Field-Programmable Gate Arrays (FPGAs) are a common type of PLD.

Programmable Array Logic (PAL):

70. What is PAL (Programmable Array Logic)?

- PAL is a type of programmable logic device with a fixed OR array and a programmable AND array.

71. How does PAL differ from a PLA (Programmable Logic Array)?

- PAL has a fixed OR array, while PLA has both programmable AND and OR arrays.

Complex Programmable Logic Devices (CPLDs):

72. What are CPLDs?

- CPLDs are a type of programmable logic device that offers a compromise between PLAs and FPGAs.

73. What is the primary advantage of CPLDs?

- CPLDs are faster than FPGAs for many tasks and have lower power consumption.

74. What is an FPGA?

- An FPGA is a programmable integrated circuit that allows users to implement custom digital logic circuits.

75. What are some typical applications of FPGAs?

- FPGAs are used in digital signal processing, hardware acceleration, prototyping, and more.

Sequential Circuits:

76. What is a sequential circuit?

- A sequential circuit is a digital circuit with memory elements, like flip-flops, which allow it to store past inputs and state.

77. How does a sequential circuit differ from a combinational circuit?

- A combinational circuit's output depends only on its current inputs, while a sequential circuit's output depends on both inputs and past state.

UP/DOWN Counters:

78. What is an up/down counter?

- An up/down counter can count both upward and downward, depending on a control input.

79. How do you implement an up/down counter using a D flip-flop?

- By using a D flip-flop with an inverted input for counting down.

Timing Diagrams:

80. What is a timing diagram?

- A timing diagram visually represents the behavior of digital signals over time.

81. How are clock signals represented in a timing diagram?

- Clock signals are often shown as square waves with rising and falling edges.

The Finite State Machine Model:

82. What is a finite state machine (FSM)?

- An FSM is an abstract machine that can be in a finite number of states and transitions between these states based on inputs.

83. What is the difference between Mealy and Moore state machines?

- In a Mealy machine, the output depends on both current state and inputs, while in a Moore machine, the output depends only on the current state.

Synthesis of Finite State Machines:

84. What is synthesis in the context of finite state machines?

- \quad Synthesis involves designing and implementing a finite state machine using digital logic circuits.

85. What are state transition diagrams used for?

- \quad State transition diagrams visually represent the behavior of a finite state machine.

Memory System: Semiconductor RAM Memories:

86. What is RAM (Random Access Memory)?

- RAM is a type of volatile computer memory that can be read from and written to.

87. What is the difference between SRAM and DRAM?

- \quad SRAM (Static RAM) is faster but more expensive than DRAM (Dynamic RAM) and does not require refreshing.

Internal Organization of Memory Chips:

88. How are memory cells typically organized within a memory chip?

- Memory cells are organized as rows and columns in a matrix.

89. What is a memory word?

- A memory word is the amount of data that can be read or written in a single operation.

Static Memories:

90. What are static memories?

- \quad Static memories, like SRAM, retain data as long as power is applied and do not require periodic refresh.

91. Where are static memories commonly used?

- \quad Static memories are used in CPU caches and other high-speed storage.

Asynchronous DRAMs:

92. What is DRAM (Dynamic Random Access Memory)?

- DRAM is a type of volatile computer memory that requires periodic refreshing.

93. Why is DRAM called "dynamic"?

- DRAM needs refreshing because it stores data in capacitors, which slowly leak charge over time.

Synchronous DRAMs:

94. What is SDRAM (Synchronous Dynamic RAM)?

- SDRAM is a type of DRAM that synchronizes memory operations with a clock signal.

95. How does SDRAM improve memory performance?

- SDRAM allows for higher memory bandwidth by synchronizing access to memory cells.

Structure of Large Memories:

96. How are large memories constructed?

- Large memories are typically constructed by connecting multiple smaller memory chips.

97. What is interleaved memory?

- Interleaved memory uses multiple memory banks to increase memory access speed.

Memory System Considerations:

98. What factors should be considered when designing a memory system?

- Factors include speed, capacity, power consumption, and cost.

99. What is memory latency?

- Memory latency is the time delay between requesting data from memory and receiving it.

RAMBUS Memory:

100. What is Rambus memory?

- Rambus memory is a high-speed memory technology designed for increased bandwidth and data transfer rates.

Long Type Questions

1. What are character codes, and how do they differ from numeric codes in digital systems?
2. Explain the decimal numbering system and its significance in digital electronics.
3. Describe the binary numbering system and its application in computer architecture.
4. Walk through the process of converting a decimal number to binary.
5. What is hexadecimal notation, and why is it commonly used in programming and digital systems?
6. How does Boolean algebra contribute to the design of digital circuits?
7. Define basic logic functions and provide examples of electronic logic gates for each function.
8. Explain the synthesis of logic functions and its role in designing complex digital circuits.
9. Discuss the minimization of logic expressions and its importance in circuit optimization.
10. How are Karnaugh maps used to simplify logic functions and reduce circuit complexity?
11. Describe the synthesis of logic functions using NAND and NOR gates, highlighting their advantages.
12. What is the purpose of tri-state buffers in digital circuits, and how are they implemented?
13. Explain the principles behind arithmetic operations like addition and subtraction of signed numbers in binary.
14. Describe the architecture and operation of an addition/subtraction logic unit.
15. How does a carry-lookahead addition circuit improve the speed of addition operations?
16. Outline the multiplication of positive numbers and its importance in digital arithmetic.
17. Discuss the Booth algorithm for signed operand multiplication and its efficiency.
18. Explain the concept of fast multiplication using bit-pair recoding multipliers.
19. Describe the carry-save addition method for summing multiple operands.
20. What are the challenges involved in performing integer division in digital systems?
21. Provide an overview of floating-point numbers and their representation using the IEEE Standard.
22. Describe the basic arithmetic operations (addition, subtraction, multiplication, division) on floating-point numbers.
23. Explain the purpose of guard bits and truncation in floating-point arithmetic.
24. How are floating-point operations implemented in hardware?
25. Differentiate between flip-flops, gated latches, and master-slave flip-flops in sequential circuits.
26. Discuss the concept of edge-triggering in flip-flops and its significance.
27. Explain the characteristics and applications of T flip-flops.
28. Describe the working principles and applications of JK flip-flops.
29. What are registers, and how are they used in digital systems?
30. Discuss the functionality and applications of shift registers.
31. Explain the operation of counters and their various types in digital circuits.
32. How do decoders work, and what are their roles in digital systems?
33. Describe multiplexers and their applications in data routing and selection.
34. What are Programmable Logic Devices (PLDs), and how are they programmed?
35. Discuss the architecture and functionality of Programmable Array Logic (PAL) devices.
36. Explain the characteristics of Complex Programmable Logic Devices (CPLDs).
37. What is a Field-Programmable Gate Array (FPGA), and how does it differ from other programmable devices?
38. Describe sequential circuits and their importance in digital systems.
39. Discuss the operation of UP/DOWN counters and their applications.
40. Create timing diagrams for simple digital circuits to illustrate their behavior.
41. Explain the Finite State Machine (FSM) model and its role in digital design.
42. How are Finite State Machines synthesized from state diagrams?
43. What are semiconductor RAM memories, and how do they store data?
44. Describe the internal organization of memory chips and their components.
45. Differentiate between static RAM (SRAM) and dynamic RAM (DRAM) technologies.
46. Explain the operation of asynchronous DRAMs and their advantages.
47. Discuss the principles of synchronous DRAMs and their use in modern memory systems.
48. What considerations are important in designing large memory structures?
49. Explain the architecture and characteristics of RAMBUS memory.
50. Describe various types of Read-Only Memories (ROMs), including PROM, EPROM, EEPROM, and Flash Memory, highlighting their differences in terms of speed, size, and cost.
