Computer Science Core-1 (Digital Logic)

Fill in the Blanks (ALL Units)

1.	The basic building block of digital circuits is called a Answer: Gate
2.	A logic gate that performs the NOT operation is called a gate. Answer: NOT
3.	The Boolean expression for the AND gate is Answer: A * B
4.	In binary, the value represented by 1010 is equal to in decimal. Answer: 10
5.	The output of an OR gate is HIGH when or more inputs are HIGH. Answer: One
6.	A gate is used to add two binary numbers. Answer: Half Adder
7.	The binary number system is abased number system. Answer: 2
8.	The basic operations in Boolean algebra are AND, OR, and Answer: NOT
9.	A flip-flop is a bistable multivibrator that can store bit(s) of data. Answer: 1
10.	The NOR gate is equivalent to an OR gate followed by a gate. Answer: NOT
11.	In a flip-flop, the output changes on the falling edge of the clock signal.
Answe	er: D
12.	A is used to represent data storage in sequential circuits. Answer: Flip-flop
13.	In a 2-input XOR gate, the output is HIGH when inputs are different. Answer:
Both	
14.	A half adder can add two binary digits and produce and outputs.
Answe	er: Sum, Carry
15.	The output of a NOT gate is the of its input. Answer: Inversion
16.	A circuit can store one bit of data. Answer: Flip-flop
17.	A full adder can add two binary digits and account for any from previous
stages	s. Answer: Carry
18.	A gate has a single input and a single output. Answer: NOT
19.	In a binary number, the rightmost bit is called the bit. Answer: Least Significant
20.	The output of an AND gate is HIGH only when inputs are HIGH. Answer: All
21.	A multiplexer has data inputs and select inputs. Answer: Many, Few
22.	A flip-flop has two inputs: a data input and a clock input. Answer: D
23.	A gate is also known as an inverter. Answer: NOT
24.	The sum output of a full adder is calculated as XOR XOR
Answe	er: A XOR B XOR Cin
25.	A gate is used to generate the complement of a binary number. Answer: NOT
26.	The output of a XOR gate is HIGH when inputs are different. Answer: Both
27.	In binary, the value represented by 1111 is equal to in decimal. Answer: 15
28.	A circuit can store multiple bits of data. Answer: Register
29.	A multiplexer with 4 data inputs will have select lines. Answer: 2
30.	The operation of a flip-flop can be controlled by a clock signal and inputs.
Answe	er: Data
31.	A gate performs the OR operation on two or more inputs. Answer: OR
32.	A gate can be used to implement addition in binary arithmetic. Answer: XOR
33.	The binary number system uses only two digits, which are and
Answe	er: 0, 1
34.	A gate performs the NOT operation. Answer: NOT
35.	In binary, the value represented by 1100 is equal to in decimal. Answer: 12
36.	The output of a NOR gate is LOW when inputs are HIGH. Answer: Any

37.	In a 2-input XOR gate, the output is LOW when inputs are the same. Answer:
Both	
38.	A flip-flop is used to store one bit of data. Answer: D
39.	A gate performs the AND operation on two or more inputs. Answer: AND
40.	In a half adder, the carry output is generated when inputs are HIGH. Answer:
Both	
41.	The output of a NAND gate is LOW only when inputs are HIGH. Answer: All
42.	A multiplexer with 8 data inputs will have select lines. Answer: 3
43.	The flip-flop is the most basic type of flip-flop. Answer: SR
44.	In binary, the value represented by 1001 is equal to in decimal. Answer: 9
45.	A circuit can perform arithmetic and logical operations. Answer: ALU
(Arith	metic Logic Unit)
46.	A full adder has inputs and outputs. Answer: 3, 2
47.	A gate performs the OR operation on two inputs. Answer: OR
48.	The sum output of a full adder is calculated as XOR XOR
	er: A XOR B XOR Cin
49.	In a binary number, the leftmost bit is called the bit. Answer: Most Significant
50.	A gate can be used to generate the complement of a binary number. Answer:
NOT	A gate can be used to generate the complement of a binary number. Answer.
51.	The output of an XOR gate is HIGH when inputs are different. Answer: Both
52.	In binary, the value represented by 1011 is equal to in decimal. Answer: 11
53.	A circuit can store multiple bits of data. Answer: Register
54.	A multiplexer with 16 data inputs will have select lines. Answer: 4
55.	The operation of a flip-flop can be controlled by a clock signal and inputs.
	er: Data
56.	A gate performs the AND operation on two inputs. Answer: AND
57.	
58.	The binary number system uses only two digits, which are and
	er: 0, 1
59.	A gate performs the NOT operation. Answer: NOT
60.	In binary, the value represented by 1101 is equal to in decimal. Answer: 13
61.	The output of a NOR gate is LOW when inputs are HIGH. Answer: Any
62.	In a 2-input XOR gate, the output is LOW when inputs are the same. Answer:
Both	in a 2-input NOR gate, the output is LOW when inputs are the same. Answer.
	A flip flop is used to store one bit of data Angueri D
63.	A flip-flop is used to store one bit of data. Answer: D
64.	A gate performs the AND operation on two inputs. Answer: AND
65.	In a half adder, the carry output is generated when inputs are HIGH. Answer:
Both	
66.	TI
c =	The output of a NAND gate is LOW only when inputs are HIGH. Answer: All
67.	A multiplexer with 8 data inputs will have select lines. Answer: 3
68.	A multiplexer with 8 data inputs will have select lines. Answer: 3 The flip-flop is the most basic type of flip-flop. Answer: SR
68. 69.	A multiplexer with 8 data inputs will have select lines. Answer: 3 The flip-flop is the most basic type of flip-flop. Answer: SR In binary, the value represented by 1000 is equal to in decimal. Answer: 8
68. 69. 70.	A multiplexer with 8 data inputs will have select lines. Answer: 3 The flip-flop is the most basic type of flip-flop. Answer: SR In binary, the value represented by 1000 is equal to in decimal. Answer: 8 A circuit can perform arithmetic and logical operations. Answer: ALU
68. 69. 70. (Arith	A multiplexer with 8 data inputs will have select lines. Answer: 3 The flip-flop is the most basic type of flip-flop. Answer: SR In binary, the value represented by 1000 is equal to in decimal. Answer: 8 A circuit can perform arithmetic and logical operations. Answer: ALU metic Logic Unit)
68. 69. 70.	A multiplexer with 8 data inputs will have select lines. Answer: 3 The flip-flop is the most basic type of flip-flop. Answer: SR In binary, the value represented by 1000 is equal to in decimal. Answer: 8 A circuit can perform arithmetic and logical operations. Answer: ALU metic Logic Unit) A full adder has inputs and outputs. Answer: 3, 2
68. 69. 70. (Arith	A multiplexer with 8 data inputs will have select lines. Answer: 3 The flip-flop is the most basic type of flip-flop. Answer: SR In binary, the value represented by 1000 is equal to in decimal. Answer: 8 A circuit can perform arithmetic and logical operations. Answer: ALU metic Logic Unit)
68. 69. 70. (Arith 71.	A multiplexer with 8 data inputs will have select lines. Answer: 3 The flip-flop is the most basic type of flip-flop. Answer: SR In binary, the value represented by 1000 is equal to in decimal. Answer: 8 A circuit can perform arithmetic and logical operations. Answer: ALU metic Logic Unit) A full adder has inputs and outputs. Answer: 3, 2
68. 69. 70. (Arith 71. 72. 73.	A multiplexer with 8 data inputs will have select lines. Answer: 3 The flip-flop is the most basic type of flip-flop. Answer: SR In binary, the value represented by 1000 is equal to in decimal. Answer: 8 A circuit can perform arithmetic and logical operations. Answer: ALU metic Logic Unit) A full adder has inputs and outputs. Answer: 3, 2 A gate performs the OR operation on two inputs. Answer: OR

NOT 76. The output of an XOR gate is HIGH when inputs are different. Answer: Both 77. In binary, the value represented by 1011 is equal to in decimal. Answer: 11 78. A circuit can store multiple bits of data. Answer: Register 79. A multiplexer with 16 data inputs will have select lines. Answer: 4 80. The operation of a flip-flop can be controlled by a clock signal and inputs. Answer: Data 81. A gate performs the AND operation on two inputs. Answer: AND 82. A gate can be used to implement addition in binary arithmetic. Answer: XOR 83. The binary number system uses only two digits, which are and Answer: 0, 1 84. A gate performs the NOT operation. Answer: NOT 85. In binary, the value represented by 1101 is equal to in decimal. Answer: 13 86. The output of a NOR gate is LOW when inputs are HIGH. Answer: Any 87. In a 2-input XOR gate, the output is LOW when inputs are the same. Answer: 88. A flip-flop is used to store one bit of data. Answer: D 89. A gate performs the AND operation on two inputs. Answer: AND 90. In a half adder, the carry output is generated when inputs are HIGH. Answer: 80th 91. The output of a NAND gate is LOW only when inputs are HIGH. Answer: All 92. A multiplexer with 8 data inputs will have select lines. Answer: 3 93. The flip-flop is the most basic type of flip-flop. Answer: SR 94. In binary, the value represented by 1000 is equal to in decimal. Answer: 8 95. A circuit can perform arithmetic and logical operations. Answer: ALU (Arithmetic Logic Unit) 96. A full adder has inputs and outputs. Answer: 3, 2 97. A gate performs the OR operation on two inputs. Answer: OR 98. The sum output of a full adder is calculated as XOR XOR Answer: A XOR B XOR Cin 99. In a binary number, the leftmost bit is called the bit. Answer: Most Significant 100. A gate can be used to generate the complement of a binary number. Answer:	75.	A gate can be used to generate the complement of a binary number. Answer:
77. In binary, the value represented by 1011 is equal to in decimal. Answer: 11 78. A circuit can store multiple bits of data. Answer: Register 79. A multiplexer with 16 data inputs will have select lines. Answer: 4 80. The operation of a flip-flop can be controlled by a clock signal and inputs. 79. Answer: Data 81. A gate performs the AND operation on two inputs. Answer: AND 82. A gate can be used to implement addition in binary arithmetic. Answer: XOR 83. The binary number system uses only two digits, which are and 79. Answer: 0, 1 79. A gate performs the NOT operation. Answer: NOT 79. In binary, the value represented by 1101 is equal to in decimal. Answer: 13 79. In a 2-input XOR gate is LOW when inputs are HIGH. Answer: Any 70. In a 2-input XOR gate, the output is LOW when inputs are the same. Answer: 80. A gate performs the AND operation on two inputs. Answer: AND 80. In a half adder, the carry output is generated when inputs are HIGH. Answer: 80. A gate performs the AND operation on two inputs. Answer: AND 90. In a half adder, the carry output is generated when inputs are HIGH. Answer: 80. A multiplexer with 8 data inputs will have select lines. Answer: 3 91. The output of a NAND gate is LOW only when inputs are HIGH. Answer: All 92. A multiplexer with 8 data inputs will have select lines. Answer: 3 93. The flip-flop is the most basic type of flip-flop. Answer: SR 94. In binary, the value represented by 1000 is equal to in decimal. Answer: 8 95. A circuit can perform arithmetic and logical operations. Answer: ALU (Arithmetic Logic Unit) 96. A full adder has inputs and outputs. Answer: OR 98. The sum output of a full adder is calculated as XOR Answer: A XOR B XOR Cin 99. In a binary number, the leftmost bit is called the bit. Answer: Most Significant 100. A gate performs the OR operation on two inputs.	NOT	
78. A circuit can store multiple bits of data. Answer: Register 79. A multiplexer with 16 data inputs will have select lines. Answer: 4 80. The operation of a flip-flop can be controlled by a clock signal and inputs. Answer: Data 81. A gate performs the AND operation on two inputs. Answer: AND 82. A gate can be used to implement addition in binary arithmetic. Answer: XOR 83. The binary number system uses only two digits, which are and Answer: 0, 1 84. A gate performs the NOT operation. Answer: NOT 85. In binary, the value represented by 1101 is equal to in decimal. Answer: 13 86. The output of a NOR gate is LOW when inputs are HIGH. Answer: Any 87. In a 2-input XOR gate, the output is LOW when inputs are the same. Answer: Both 88. A flip-flop is used to store one bit of data. Answer: D 89. A gate performs the AND operation on two inputs. Answer: AND 90. In a half adder, the carry output is generated when inputs are HIGH. Answer: Both 91. The output of a NAND gate is LOW only when inputs are HIGH. Answer: All 92. A multiplexer with 8 data inputs will have select lines. Answer: 3 93. The flip-flop is the most basic type of flip-flop. Answer: SR 94. In binary, the value represented by 1000 is equal to in decimal. Answer: 8 95. A circuit can perform arithmetic and logical operations. Answer: ALU (Arithmetic Logic Unit) 96. A full adder has inputs and outputs. Answer: OR 97. A gate performs the OR operation on two inputs. Answer: OR 98. The sum output of a full adder is calculated as XOR XOR Answer: A XOR B XOR Cin 99. In a binary number, the leftmost bit is called the bit. Answer: Most Significant 100. A gate can be used to generate the complement of a binary number. Answer:	76.	·
79. A multiplexer with 16 data inputs will have select lines. Answer: 4 80. The operation of a flip-flop can be controlled by a clock signal and inputs. Answer: Data 81. A gate performs the AND operation on two inputs. Answer: AND 82. A gate can be used to implement addition in binary arithmetic. Answer: XOR 83. The binary number system uses only two digits, which are and Answer: 0, 1 84. A gate performs the NOT operation. Answer: NOT 85. In binary, the value represented by 1101 is equal to in decimal. Answer: 13 86. The output of a NOR gate is LOW when inputs are HIGH. Answer: Any 87. In a 2-input XOR gate, the output is LOW when inputs are the same. Answer: Both 88. A flip-flop is used to store one bit of data. Answer: D 89. A gate performs the AND operation on two inputs. Answer: AND 90. In a half adder, the carry output is generated when inputs are HIGH. Answer: Both 91. The output of a NAND gate is LOW only when inputs are HIGH. Answer: All 92. A multiplexer with 8 data inputs will have select lines. Answer: 3 93. The flip-flop is the most basic type of flip-flop. Answer: SR 94. In binary, the value represented by 1000 is equal to in decimal. Answer: 8 95. A circuit can perform arithmetic and logical operations. Answer: ALU (Arithmetic Logic Unit) 96. A full adder has inputs and outputs. Answer: 3, 2 97. A gate performs the OR operation on two inputs. Answer: OR 98. The sum output of a full adder is calculated as XOR XOR Answer: A XOR B XOR Cin 99. In a binary number, the leftmost bit is called the bit. Answer: Most Significant 100. A gate can be used to generate the complement of a binary number. Answer:	77.	In binary, the value represented by 1011 is equal to in decimal. Answer: 11
80. The operation of a flip-flop can be controlled by a clock signal and inputs. Answer: Data 81. A gate performs the AND operation on two inputs. Answer: AND 82. A gate can be used to implement addition in binary arithmetic. Answer: XOR 83. The binary number system uses only two digits, which are and Answer: 0, 1 84. A gate performs the NOT operation. Answer: NOT 85. In binary, the value represented by 1101 is equal to in decimal. Answer: 13 86. The output of a NOR gate is LOW when inputs are HIGH. Answer: Any 87. In a 2-input XOR gate, the output is LOW when inputs are the same. Answer: 8both 88. A gate performs the AND operation on two inputs. Answer: AND 90. In a half adder, the carry output is generated when inputs are HIGH. Answer: 8both 91. The output of a NAND gate is LOW only when inputs are HIGH. Answer: All 92. A multiplexer with 8 data inputs will have select lines. Answer: 3 93. The flip-flop is the most basic type of flip-flop. Answer: SR 94. In binary, the value represented by 1000 is equal to in decimal. Answer: 8 95. A circuit can perform arithmetic and logical operations. Answer: ALU (Arithmetic Logic Unit) 96. A full adder has inputs and outputs. Answer: 3, 2 97. A gate performs the OR operation on two inputs. Answer: OR 98. The sum output of a full adder is calculated as XOR XOR Answer: A XOR B XOR Cin 99. In a binary number, the leftmost bit is called the bit. Answer: Most Significant 100. A gate can be used to generate the complement of a binary number. Answer:	78.	A circuit can store multiple bits of data. Answer: Register
Answer: Data 81. A gate performs the AND operation on two inputs. Answer: AND 82. A gate can be used to implement addition in binary arithmetic. Answer: XOR 83. The binary number system uses only two digits, which are and Answer: 0, 1 84. A gate performs the NOT operation. Answer: NOT 85. In binary, the value represented by 1101 is equal to in decimal. Answer: 13 86. The output of a NOR gate is LOW when inputs are HIGH. Answer: Any 87. In a 2-input XOR gate, the output is LOW when inputs are the same. Answer: Both 88. A flip-flop is used to store one bit of data. Answer: D 89. A gate performs the AND operation on two inputs. Answer: AND 90. In a half adder, the carry output is generated when inputs are HIGH. Answer: Both 91. The output of a NAND gate is LOW only when inputs are HIGH. Answer: All 92. A multiplexer with 8 data inputs will have select lines. Answer: 3 93. The flip-flop is the most basic type of flip-flop. Answer: SR 94. In binary, the value represented by 1000 is equal to in decimal. Answer: 8 95. A circuit can perform arithmetic and logical operations. Answer: ALU (Arithmetic Logic Unit) 96. A full adder has inputs and outputs. Answer: 3, 2 97. A gate performs the OR operation on two inputs. Answer: OR 98. The sum output of a full adder is calculated as XOR XOR Answer: A XOR B XOR Cin 99. In a binary number, the leftmost bit is called the bit. Answer: Most Significant 100. A gate can be used to generate the complement of a binary number. Answer:	79.	A multiplexer with 16 data inputs will have select lines. Answer: 4
81. A gate performs the AND operation on two inputs. Answer: AND 82. A gate can be used to implement addition in binary arithmetic. Answer: XOR 83. The binary number system uses only two digits, which are and Answer: 0, 1 84. A gate performs the NOT operation. Answer: NOT 85. In binary, the value represented by 1101 is equal to in decimal. Answer: 13 86. The output of a NOR gate is LOW when inputs are HIGH. Answer: Any 87. In a 2-input XOR gate, the output is LOW when inputs are the same. Answer: Both 88. A flip-flop is used to store one bit of data. Answer: D 89. A gate performs the AND operation on two inputs. Answer: AND 90. In a half adder, the carry output is generated when inputs are HIGH. Answer: Both 91. The output of a NAND gate is LOW only when inputs are HIGH. Answer: All 92. A multiplexer with 8 data inputs will have select lines. Answer: 3 93. The flip-flop is the most basic type of flip-flop. Answer: SR 94. In binary, the value represented by 1000 is equal to in decimal. Answer: 8 95. A circuit can perform arithmetic and logical operations. Answer: ALU (Arithmetic Logic Unit) 96. A full adder has inputs and outputs. Answer: 3, 2 97. A gate performs the OR operation on two inputs. Answer: OR 98. The sum output of a full adder is calculated as XOR XOR Answer: A XOR B XOR Cin 99. In a binary number, the leftmost bit is called the bit. Answer: Most Significant 100. A gate can be used to generate the complement of a binary number. Answer:	80.	The operation of a flip-flop can be controlled by a clock signal and inputs.
82. A gate can be used to implement addition in binary arithmetic. Answer: XOR 83. The binary number system uses only two digits, which are and Answer: 0, 1 84. A gate performs the NOT operation. Answer: NOT 85. In binary, the value represented by 1101 is equal to in decimal. Answer: 13 86. The output of a NOR gate is LOW when inputs are HIGH. Answer: Any 87. In a 2-input XOR gate, the output is LOW when inputs are the same. Answer: 88. A flip-flop is used to store one bit of data. Answer: D 89. A gate performs the AND operation on two inputs. Answer: AND 90. In a half adder, the carry output is generated when inputs are HIGH. Answer: 80th 91. The output of a NAND gate is LOW only when inputs are HIGH. Answer: All 92. A multiplexer with 8 data inputs will have select lines. Answer: 3 93. The flip-flop is the most basic type of flip-flop. Answer: SR 94. In binary, the value represented by 1000 is equal to in decimal. Answer: 8 95. A circuit can perform arithmetic and logical operations. Answer: ALU (Arithmetic Logic Unit) 96. A full adder has inputs and outputs. Answer: 3, 2 97. A gate performs the OR operation on two inputs. Answer: OR 98. The sum output of a full adder is calculated as XOR XOR Answer: A XOR B XOR Cin 99. In a binary number, the leftmost bit is called the bit. Answer: Most Significant 100. A gate can be used to generate the complement of a binary number. Answer:	Answ	er: Data
 83. The binary number system uses only two digits, which are and Answer: 0, 1 84. A gate performs the NOT operation. Answer: NOT 85. In binary, the value represented by 1101 is equal to in decimal. Answer: 13 86. The output of a NOR gate is LOW when inputs are HIGH. Answer: Any 87. In a 2-input XOR gate, the output is LOW when inputs are the same. Answer: Both 88. A flip-flop is used to store one bit of data. Answer: D 89. A gate performs the AND operation on two inputs. Answer: AND 90. In a half adder, the carry output is generated when inputs are HIGH. Answer: Both 91. The output of a NAND gate is LOW only when inputs are HIGH. Answer: All 92. A multiplexer with 8 data inputs will have select lines. Answer: 3 93. The flip-flop is the most basic type of flip-flop. Answer: SR 94. In binary, the value represented by 1000 is equal to in decimal. Answer: 8 95. A circuit can perform arithmetic and logical operations. Answer: ALU (Arithmetic Logic Unit) 96. A full adder has inputs and outputs. Answer: 3, 2 97. A gate performs the OR operation on two inputs. Answer: OR 98. The sum output of a full adder is calculated as XOR XOR Answer: A XOR B XOR Cin 99. In a binary number, the leftmost bit is called the bit. Answer: Most Significant 100. A gate can be used to generate the complement of a binary number. Answer: 	81.	A gate performs the AND operation on two inputs. Answer: AND
Answer: 0, 1 84. A gate performs the NOT operation. Answer: NOT 85. In binary, the value represented by 1101 is equal to in decimal. Answer: 13 86. The output of a NOR gate is LOW when inputs are HIGH. Answer: Any 87. In a 2-input XOR gate, the output is LOW when inputs are the same. Answer: 88. A flip-flop is used to store one bit of data. Answer: D 89. A gate performs the AND operation on two inputs. Answer: AND 90. In a half adder, the carry output is generated when inputs are HIGH. Answer: 80th 91. The output of a NAND gate is LOW only when inputs are HIGH. Answer: All 92. A multiplexer with 8 data inputs will have select lines. Answer: 3 93. The flip-flop is the most basic type of flip-flop. Answer: SR 94. In binary, the value represented by 1000 is equal to in decimal. Answer: 8 95. A circuit can perform arithmetic and logical operations. Answer: ALU (Arithmetic Logic Unit) 96. A full adder has inputs and outputs. Answer: 3, 2 97. A gate performs the OR operation on two inputs. Answer: OR 98. The sum output of a full adder is calculated as XOR XOR Answer: A XOR B XOR Cin 99. In a binary number, the leftmost bit is called the bit. Answer: Most Significant 100. A gate can be used to generate the complement of a binary number. Answer:	82.	A gate can be used to implement addition in binary arithmetic. Answer: XOR
84. A gate performs the NOT operation. Answer: NOT 85. In binary, the value represented by 1101 is equal to in decimal. Answer: 13 86. The output of a NOR gate is LOW when inputs are HIGH. Answer: Any 87. In a 2-input XOR gate, the output is LOW when inputs are the same. Answer: 88. A flip-flop is used to store one bit of data. Answer: D 89. A gate performs the AND operation on two inputs. Answer: AND 90. In a half adder, the carry output is generated when inputs are HIGH. Answer: 80th 91. The output of a NAND gate is LOW only when inputs are HIGH. Answer: All 92. A multiplexer with 8 data inputs will have select lines. Answer: 3 93. The flip-flop is the most basic type of flip-flop. Answer: SR 94. In binary, the value represented by 1000 is equal to in decimal. Answer: 8 95. A circuit can perform arithmetic and logical operations. Answer: ALU (Arithmetic Logic Unit) 96. A full adder has inputs and outputs. Answer: 3, 2 97. A gate performs the OR operation on two inputs. Answer: OR 98. The sum output of a full adder is calculated as XOR XOR Answer: A XOR B XOR Cin 99. In a binary number, the leftmost bit is called the bit. Answer: Most Significant 100. A gate can be used to generate the complement of a binary number. Answer:	83.	The binary number system uses only two digits, which are and
85. In binary, the value represented by 1101 is equal to in decimal. Answer: 13 86. The output of a NOR gate is LOW when inputs are HIGH. Answer: Any 87. In a 2-input XOR gate, the output is LOW when inputs are the same. Answer: 88. A flip-flop is used to store one bit of data. Answer: D 89. A gate performs the AND operation on two inputs. Answer: AND 90. In a half adder, the carry output is generated when inputs are HIGH. Answer: 80th 91. The output of a NAND gate is LOW only when inputs are HIGH. Answer: All 92. A multiplexer with 8 data inputs will have select lines. Answer: 3 93. The flip-flop is the most basic type of flip-flop. Answer: SR 94. In binary, the value represented by 1000 is equal to in decimal. Answer: 8 95. A circuit can perform arithmetic and logical operations. Answer: ALU (Arithmetic Logic Unit) 96. A full adder has inputs and outputs. Answer: 3, 2 97. A gate performs the OR operation on two inputs. Answer: OR 98. The sum output of a full adder is calculated as XOR XOR Answer: A XOR B XOR Cin 99. In a binary number, the leftmost bit is called the bit. Answer: Most Significant 100. A gate can be used to generate the complement of a binary number. Answer:	Answ	er: 0, 1
86. The output of a NOR gate is LOW when inputs are HIGH. Answer: Any 87. In a 2-input XOR gate, the output is LOW when inputs are the same. Answer: 88. A flip-flop is used to store one bit of data. Answer: D 89. A gate performs the AND operation on two inputs. Answer: AND 90. In a half adder, the carry output is generated when inputs are HIGH. Answer: 80th 91. The output of a NAND gate is LOW only when inputs are HIGH. Answer: All 92. A multiplexer with 8 data inputs will have select lines. Answer: 3 93. The flip-flop is the most basic type of flip-flop. Answer: SR 94. In binary, the value represented by 1000 is equal to in decimal. Answer: 8 95. A circuit can perform arithmetic and logical operations. Answer: ALU (Arithmetic Logic Unit) 96. A full adder has inputs and outputs. Answer: 3, 2 97. A gate performs the OR operation on two inputs. Answer: OR 98. The sum output of a full adder is calculated as XOR XOR Answer: A XOR B XOR Cin 99. In a binary number, the leftmost bit is called the bit. Answer: Most Significant 100. A gate can be used to generate the complement of a binary number. Answer:	84.	A gate performs the NOT operation. Answer: NOT
87. In a 2-input XOR gate, the output is LOW when inputs are the same. Answer: Both 88. A flip-flop is used to store one bit of data. Answer: D 89. A gate performs the AND operation on two inputs. Answer: AND 90. In a half adder, the carry output is generated when inputs are HIGH. Answer: Both 91. The output of a NAND gate is LOW only when inputs are HIGH. Answer: All 92. A multiplexer with 8 data inputs will have select lines. Answer: 3 93. The flip-flop is the most basic type of flip-flop. Answer: SR 94. In binary, the value represented by 1000 is equal to in decimal. Answer: 8 95. A circuit can perform arithmetic and logical operations. Answer: ALU (Arithmetic Logic Unit) 96. A full adder has inputs and outputs. Answer: 3, 2 97. A gate performs the OR operation on two inputs. Answer: OR 98. The sum output of a full adder is calculated as XOR Answer: A XOR B XOR Cin 99. In a binary number, the leftmost bit is called the bit. Answer: Most Significant 100. A gate can be used to generate the complement of a binary number. Answer:	85.	In binary, the value represented by 1101 is equal to in decimal. Answer: 13
Both 88. A flip-flop is used to store one bit of data. Answer: D 89. A gate performs the AND operation on two inputs. Answer: AND 90. In a half adder, the carry output is generated when inputs are HIGH. Answer: Both 91. The output of a NAND gate is LOW only when inputs are HIGH. Answer: All 92. A multiplexer with 8 data inputs will have select lines. Answer: 3 93. The flip-flop is the most basic type of flip-flop. Answer: SR 94. In binary, the value represented by 1000 is equal to in decimal. Answer: 8 95. A circuit can perform arithmetic and logical operations. Answer: ALU (Arithmetic Logic Unit) 96. A full adder has inputs and outputs. Answer: 3, 2 97. A gate performs the OR operation on two inputs. Answer: OR 98. The sum output of a full adder is calculated as XOR XOR Answer: A XOR B XOR Cin 99. In a binary number, the leftmost bit is called the bit. Answer: Most Significant 100. A gate can be used to generate the complement of a binary number. Answer:	86.	The output of a NOR gate is LOW when inputs are HIGH. Answer: Any
88. A flip-flop is used to store one bit of data. Answer: D 89. A gate performs the AND operation on two inputs. Answer: AND 90. In a half adder, the carry output is generated when inputs are HIGH. Answer: Both 91. The output of a NAND gate is LOW only when inputs are HIGH. Answer: All 92. A multiplexer with 8 data inputs will have select lines. Answer: 3 93. The flip-flop is the most basic type of flip-flop. Answer: SR 94. In binary, the value represented by 1000 is equal to in decimal. Answer: 8 95. A circuit can perform arithmetic and logical operations. Answer: ALU (Arithmetic Logic Unit) 96. A full adder has inputs and outputs. Answer: 3, 2 97. A gate performs the OR operation on two inputs. Answer: OR 98. The sum output of a full adder is calculated as XOR XOR Answer: A XOR B XOR Cin 99. In a binary number, the leftmost bit is called the bit. Answer: Most Significant 100. A gate can be used to generate the complement of a binary number. Answer:	87.	In a 2-input XOR gate, the output is LOW when inputs are the same. Answer:
 89. A gate performs the AND operation on two inputs. Answer: AND 90. In a half adder, the carry output is generated when inputs are HIGH. Answer: Both 91. The output of a NAND gate is LOW only when inputs are HIGH. Answer: All 92. A multiplexer with 8 data inputs will have select lines. Answer: 3 93. The flip-flop is the most basic type of flip-flop. Answer: SR 94. In binary, the value represented by 1000 is equal to in decimal. Answer: 8 95. A circuit can perform arithmetic and logical operations. Answer: ALU (Arithmetic Logic Unit) 96. A full adder has inputs and outputs. Answer: 3, 2 97. A gate performs the OR operation on two inputs. Answer: OR 98. The sum output of a full adder is calculated as XOR XOR Answer: A XOR B XOR Cin 99. In a binary number, the leftmost bit is called the bit. Answer: Most Significant 100. A gate can be used to generate the complement of a binary number. Answer: 	Both	
 90. In a half adder, the carry output is generated when inputs are HIGH. Answer: Both 91. The output of a NAND gate is LOW only when inputs are HIGH. Answer: All 92. A multiplexer with 8 data inputs will have select lines. Answer: 3 93. The flip-flop is the most basic type of flip-flop. Answer: SR 94. In binary, the value represented by 1000 is equal to in decimal. Answer: 8 95. A circuit can perform arithmetic and logical operations. Answer: ALU (Arithmetic Logic Unit) 96. A full adder has inputs and outputs. Answer: 3, 2 97. A gate performs the OR operation on two inputs. Answer: OR 98. The sum output of a full adder is calculated as XOR XOR Answer: A XOR B XOR Cin 99. In a binary number, the leftmost bit is called the bit. Answer: Most Significant 100. A gate can be used to generate the complement of a binary number. Answer: 	88.	A flip-flop is used to store one bit of data. Answer: D
Both 91. The output of a NAND gate is LOW only when inputs are HIGH. Answer: All 92. A multiplexer with 8 data inputs will have select lines. Answer: 3 93. The flip-flop is the most basic type of flip-flop. Answer: SR 94. In binary, the value represented by 1000 is equal to in decimal. Answer: 8 95. A circuit can perform arithmetic and logical operations. Answer: ALU (Arithmetic Logic Unit) 96. A full adder has inputs and outputs. Answer: 3, 2 97. A gate performs the OR operation on two inputs. Answer: OR 98. The sum output of a full adder is calculated as XOR XOR Answer: A XOR B XOR Cin 99. In a binary number, the leftmost bit is called the bit. Answer: Most Significant 100. A gate can be used to generate the complement of a binary number. Answer:	89.	A gate performs the AND operation on two inputs. Answer: AND
91. The output of a NAND gate is LOW only when inputs are HIGH. Answer: All 92. A multiplexer with 8 data inputs will have select lines. Answer: 3 93. The flip-flop is the most basic type of flip-flop. Answer: SR 94. In binary, the value represented by 1000 is equal to in decimal. Answer: 8 95. A circuit can perform arithmetic and logical operations. Answer: ALU (Arithmetic Logic Unit) 96. A full adder has inputs and outputs. Answer: 3, 2 97. A gate performs the OR operation on two inputs. Answer: OR 98. The sum output of a full adder is calculated as XOR XOR Answer: A XOR B XOR Cin 99. In a binary number, the leftmost bit is called the bit. Answer: Most Significant 100. A gate can be used to generate the complement of a binary number. Answer:	90.	In a half adder, the carry output is generated when inputs are HIGH. Answer:
92. A multiplexer with 8 data inputs will have select lines. Answer: 3 93. The flip-flop is the most basic type of flip-flop. Answer: SR 94. In binary, the value represented by 1000 is equal to in decimal. Answer: 8 95. A circuit can perform arithmetic and logical operations. Answer: ALU (Arithmetic Logic Unit) 96. A full adder has inputs and outputs. Answer: 3, 2 97. A gate performs the OR operation on two inputs. Answer: OR 98. The sum output of a full adder is calculated as XOR Answer: A XOR B XOR Cin 99. In a binary number, the leftmost bit is called the bit. Answer: Most Significant 100. A gate can be used to generate the complement of a binary number. Answer:	Both	
93. The flip-flop is the most basic type of flip-flop. Answer: SR 94. In binary, the value represented by 1000 is equal to in decimal. Answer: 8 95. A circuit can perform arithmetic and logical operations. Answer: ALU (Arithmetic Logic Unit) 96. A full adder has inputs and outputs. Answer: 3, 2 97. A gate performs the OR operation on two inputs. Answer: OR 98. The sum output of a full adder is calculated as XOR XOR Answer: A XOR B XOR Cin 99. In a binary number, the leftmost bit is called the bit. Answer: Most Significant 100. A gate can be used to generate the complement of a binary number. Answer:	91.	The output of a NAND gate is LOW only when inputs are HIGH. Answer: All
 94. In binary, the value represented by 1000 is equal to in decimal. Answer: 8 95. A circuit can perform arithmetic and logical operations. Answer: ALU (Arithmetic Logic Unit) 96. A full adder has inputs and outputs. Answer: 3, 2 97. A gate performs the OR operation on two inputs. Answer: OR 98. The sum output of a full adder is calculated as XOR XOR Answer: A XOR B XOR Cin 99. In a binary number, the leftmost bit is called the bit. Answer: Most Significant 100. A gate can be used to generate the complement of a binary number. Answer: 	92.	A multiplexer with 8 data inputs will have select lines. Answer: 3
 95. A circuit can perform arithmetic and logical operations. Answer: ALU (Arithmetic Logic Unit) 96. A full adder has inputs and outputs. Answer: 3, 2 97. A gate performs the OR operation on two inputs. Answer: OR 98. The sum output of a full adder is calculated as XOR XOR Answer: A XOR B XOR Cin 99. In a binary number, the leftmost bit is called the bit. Answer: Most Significant 100. A gate can be used to generate the complement of a binary number. Answer: 	93.	The flip-flop is the most basic type of flip-flop. Answer: SR
(Arithmetic Logic Unit) 96. A full adder has inputs and outputs. Answer: 3, 2 97. A gate performs the OR operation on two inputs. Answer: OR 98. The sum output of a full adder is calculated as XOR XOR Answer: A XOR B XOR Cin 99. In a binary number, the leftmost bit is called the bit. Answer: Most Significant 100. A gate can be used to generate the complement of a binary number. Answer:	94.	In binary, the value represented by 1000 is equal to in decimal. Answer: 8
 96. A full adder has inputs and outputs. Answer: 3, 2 97. A gate performs the OR operation on two inputs. Answer: OR 98. The sum output of a full adder is calculated as XOR XOR Answer: A XOR B XOR Cin 99. In a binary number, the leftmost bit is called the bit. Answer: Most Significant 100. A gate can be used to generate the complement of a binary number. Answer: 	95.	A circuit can perform arithmetic and logical operations. Answer: ALU
 97. A gate performs the OR operation on two inputs. Answer: OR 98. The sum output of a full adder is calculated as XOR XOR Answer: A XOR B XOR Cin 99. In a binary number, the leftmost bit is called the bit. Answer: Most Significant 100. A gate can be used to generate the complement of a binary number. Answer: 	(Arith	9
 98. The sum output of a full adder is calculated as XOR XOR Answer: A XOR B XOR Cin 99. In a binary number, the leftmost bit is called the bit. Answer: Most Significant 100. A gate can be used to generate the complement of a binary number. Answer: 	96.	A full adder has inputs and outputs. Answer: 3, 2
Answer: A XOR B XOR Cin 99. In a binary number, the leftmost bit is called the bit. Answer: Most Significant 100. A gate can be used to generate the complement of a binary number. Answer:	97.	· · · · · · · · · · · · · · · · · · ·
99. In a binary number, the leftmost bit is called the bit. Answer: Most Significant 100. A gate can be used to generate the complement of a binary number. Answer:		
100. A gate can be used to generate the complement of a binary number. Answer:	Answ	
NOT		A gate can be used to generate the complement of a binary number. Answer:
	NOT	

Fill in the Blanks Unit wise

Character Codes:	
 Character codes represent characters as Answer: Numbers ASCII stands for Answer: American Standard Code for Information Interchange Extended ASCII uses bits to represent characters. Answer: 8 Unicode is a character encoding that uses bits for encoding characters. Answer: 16 EBCDIC is a character encoding used in mainframe computers. Answer: IBM 	
Decimal System:	
6. The decimal system is abase number system. Answer: 10	
7. In the decimal system, each digit can have values from to Answer: 0, 9 8. The rightmost digit in a decimal number has a value. Answer: Ones 9. The decimal number 1234 is equivalent to (1 * 10^3) + (2 * 10^2) + (3 * 10^1) + (4 * 10^0) in notation. Answer: Exponential 10. Decimal numbers can be represented using digits from to Answer: 0,	
Binary System:	
11. The binary system is abase number system. Answer: 2	
 12. In the binary system, each digit can have values of or Answer: 0, 1 13. The rightmost digit in a binary number has a value. Answer: Ones 14. The binary number 1010 is equivalent to (1 * 2^3) + (0 * 2^2) + (1 * 2^1) + (0 * 2^0) in notation. Answer: Exponential 15. Binary numbers are commonly used in circuits and digital systems. Answer: Digital 	
Decimal to Pinary Conversion:	
Decimal to Binary Conversion:	
16. Decimal to binary conversion involves repeatedly the decimal number. Answer: Dividing	
17 When converting a decimal number to binary the remainders are read to	
 17. When converting a decimal number to binary, the remainders are read to Answer: Right, left 18. The binary equivalent of the decimal number 12 is Answer: 1100 19. The binary equivalent of the decimal number 25 is Answer: 11001 20. The binary equivalent of the decimal number 7 is Answer: 111 	
Havadasimal Natation	
Hexadecimal Notation:	
21. Hexadecimal is abase number system. Answer: 16	

22. In hexadecimal notation, the digits from 10 to 15 are represented as to Answer: A, F
The hexadecimal digit 'C' is equivalent to in decimal. Answer: 12 The hexadecimal digit '7' is equivalent to in binary. Answer: 0111 Hexadecimal numbers are commonly used in computer programming and
representation.
Boolean Algebra:
26. Boolean algebra deals with variables and logic operations. Answer: Binary
27. Boolean variables can have values of or Answer: 0, 1 28. The basic logic operations in Boolean algebra are,, and Answer: AND, OR, NOT 29. The complement of a Boolean variable 'A' is denoted as Answer: A'
30. Boolean algebra is fundamental in the design of circuits and digital systems. Answer: Logic
, g.c
Addition and Subtraction of Signed Numbers:
Addition and Subtraction of Signed Numbers:
 When adding or subtracting signed numbers, the leftmost bit is often used as the bit. Answer: Sign Two numbers with the same sign that are added together may produce overflow. Answer: Positive In two's complement representation, the leftmost bit is the bit. Answer: Most significant To subtract one number from another in two's complement form, you can add the of the second number. Answer: Two's complement Overflow occurs in signed addition when the carry into the sign bit and the carry out of the sign bit are Answer: Different
Addition/ Subtraction Logic Unit:
6. The Arithmetic Logic Unit (ALU) is responsible for performing and operations. Answer: Addition, subtraction
 ALUs typically have inputs and outputs. Answer: Two, one In a binary ALU, XOR gates are used to perform Answer: Bitwise addition The ALU operation for subtraction is often implemented using addition. Answer: Two's complement The signal is used to select the operation mode of the ALU. Answer: Control
Design of East Addores Carry Lockshood Additions
Design of Fast Adders: Carry-Lookahead Addition:
11. Carry-lookahead addition reduces propagation delay in adders. Answer: Carry
12. A carry-lookahead adder predicts carries based on the inputs. Answer: Sum and carry-in

13. The carry-lookahead adder consists of blocks. Answer: Ripple-carry
14. In a carry-lookahead adder, and signals are generated independently
of each other. Answer: Carry-in, carry-out
15. The carry-lookahead adder is faster than acarry adder. Answer: Ripple
Multiplication of Positive Numbers:
16 Multiplying two n bit numbers results in an hit product Answer: 2n
16. Multiplying two n-bit numbers results in anbit product. Answer: 2n
17. The basic multiplication operation is based on and Answer: Addition,
shifting
18. In binary multiplication, multiplying by 2^n is equivalent to the number n
positions to the left. Answer: Shifting
19. The multiplication of two n-bit numbers requires iterations of basic
multiplication. Answer: n
20. The result of binary multiplication is obtained by partial products. Answer:
Adding
Signed-Operand Multiplication: Booth Algorithm:
21. The Booth algorithm is used for signed-operand multiplication. Answer: Efficient
22. Booth's algorithm reduces the number of in multiplication. Answer: Partial
22. Booth's algorithm reduces the number of in multiplication. Answer: Partial products
23. Booth encoding classifies patterns in groups of Answer: Three
24. Booth encoding classifies patterns in groups of Ariswer. Three
numbers. Answer: Zero, one
25. Booth's algorithm is particularly efficient for operands with 1s. Answer: Sparse
25. December angertanin is particularly emisient for operation with 15.7 mbwen sparse
Fast Multiplication: Bit-Pair Recording Multipliers:
•
26. Bit-pair recording multipliers reduce the number of in multiplication. Answer:
Partial products
27. In bit-pair recording, a 0-1 pair generates a partial product of Answer: Zero
28. Bit-pair recording multipliers use a tree to accumulate partial products.
Answer: Wallace
29. Bit-pair recording multipliers are efficient for operands. Answer: Sparse
30. The bit-pair recording multiplier reduces the number of required for
multiplication. Answer: Additions
Flip-Flops and Latches:
inpriopolita Euterico.
1. A flip-flop is a bistable multivibrator that can store bit(s) of data. Answer: 1
 Gated latches are level-sensitive and require a signal to change their state.
·
Answer: Enable

4. Edge-triggering in flip-flops occurs on the edge of a clock signal. Answer: Rising or falling			
5. T flip-flops toggle their output state when the T input is Answer: High (1)6. JK flip-flops have three inputs: J, K, and a input. Answer: Clock			
Registers and Shift Registers:			
7. Registers are groups of flip-flops used for data storage. Answer: Sequential			
 8. A shift register can shift data either to the or to the right. Answer: Left 9. Counters can be implemented using registers. Answer: Shift 10. In a shift register, serial data can be shifted in or out through the Answer: Serial input/output 			
Decoders and Multiplexers:			
11. A decoder takes an input and activates one of its output lines. Answer: N-bit binary			
 12. Multiplexers are used to select one of inputs and route it to the output. Answer: Many 13. The number of select lines in a multiplexer is equal to of its input lines. Answer: The base-2 logarithm 14. A 4-to-1 multiplexer has select lines. Answer: 2 			
Programmable Logic Devices (PLDs):			
15. PLD stands for Answer: Programmable Logic Device			
16. Programmable Array Logic (PAL) devices are an example of PLDs. Answer: Simple			
17. Complex Programmable Logic Devices (CPLDs) are capable of implementing more logic functions. Answer: Complex			
18. Field-Programmable Gate Arrays (FPGAs) consist of a large number of configurable Answer: Logic blocks			
Sequential Circuits and Counters:			
19. Sequential circuits include both and combinational logic. Answer: Memory elements			
20. Up/down counters can count both and Answer: Up, down 21. Timing diagrams are used to represent the of signals in a circuit. Answer: Timing relationships			
Finite State Machines and Synthesis:			

23. In an FSM, states are connected by Answer: Transitions			
24. The synthesis of Finite State Machines involves designing the and			
Answer: State diagram, state table			
25. A state in an FSM represents a unique of the system. Answer: Condition			
26. The input combinations and their corresponding state transitions are defined in the			
Answer: State transition table			
27. In the Finite State Machine model, outputs are associated with states. Answer:			
Present			
28. FSM synthesis results in a network of and logic gates. Answer: Flip-flops			
29. In FSMs, a clock signal is used to synchronize the state transitions and ensure			
Answer: Timing integrity			
30. A Finite State Machine can be implemented using hardware, software, or a			
combination of both, known as a FSM. Answer: Mixed			
romandon or soun, known as a row. Answer. Wixed			
Semiconductor RAM Memories:			
Semiconductor IVAIN Memories.			
1. RAM stands for Random Access Answer: Memory			
 In semiconductor RAM memories, each memory cell typically stores bits of 			
data. Answer: 1			
3. The most common types of semiconductor RAM memories are DRAM (Dynamic RAM)			
and (Static RAM). Answer: SRAM			
1 3			
5. SRAM is faster and consumes power compared to DRAM. Answer: More			
Internal Organization of Memory Chins			
Internal Organization of Memory Chips:			
Internal Organization of Memory Chips: 6. Memory chips are organized into and columns of memory cells. Answer: Rows			
6. Memory chips are organized into and columns of memory cells. Answer: Rows			
6. Memory chips are organized into and columns of memory cells. Answer: Rows7. The intersection of a row and a column in a memory chip is called a Answer:			
6. Memory chips are organized into and columns of memory cells. Answer: Rows7. The intersection of a row and a column in a memory chip is called a Answer: Memory cell			
 Memory chips are organized into and columns of memory cells. Answer: Rows The intersection of a row and a column in a memory chip is called a Answer: Memory cell The size of a memory chip is often specified in terms of its capacity. Answer: 			
 Memory chips are organized into and columns of memory cells. Answer: Rows The intersection of a row and a column in a memory chip is called a Answer: Memory cell The size of a memory chip is often specified in terms of its capacity. Answer: Storage 			
 Memory chips are organized into and columns of memory cells. Answer: Rows The intersection of a row and a column in a memory chip is called a Answer: Memory cell The size of a memory chip is often specified in terms of its capacity. Answer: Storage Memory chips can be accessed in a fashion, allowing for quick data retrieval. 			
 Memory chips are organized into and columns of memory cells. Answer: Rows The intersection of a row and a column in a memory chip is called a Answer: Memory cell The size of a memory chip is often specified in terms of its capacity. Answer: Storage Memory chips can be accessed in a fashion, allowing for quick data retrieval. Answer: Random 			
 Memory chips are organized into and columns of memory cells. Answer: Rows The intersection of a row and a column in a memory chip is called a Answer: Memory cell The size of a memory chip is often specified in terms of its capacity. Answer: Storage Memory chips can be accessed in a fashion, allowing for quick data retrieval. 			
6. Memory chips are organized into and columns of memory cells. Answer: Rows 7. The intersection of a row and a column in a memory chip is called a Answer: Memory cell 8. The size of a memory chip is often specified in terms of its capacity. Answer: Storage 9. Memory chips can be accessed in a fashion, allowing for quick data retrieval. Answer: Random 10. The internal organization of a memory chip affects its and speed. Answer: Size			
 Memory chips are organized into and columns of memory cells. Answer: Rows The intersection of a row and a column in a memory chip is called a Answer: Memory cell The size of a memory chip is often specified in terms of its capacity. Answer: Storage Memory chips can be accessed in a fashion, allowing for quick data retrieval. Answer: Random 			
6. Memory chips are organized into and columns of memory cells. Answer: Rows 7. The intersection of a row and a column in a memory chip is called a Answer: Memory cell 8. The size of a memory chip is often specified in terms of its capacity. Answer: Storage 9. Memory chips can be accessed in a fashion, allowing for quick data retrieval. Answer: Random 10. The internal organization of a memory chip affects its and speed. Answer: Size Static Memories:			
6. Memory chips are organized into and columns of memory cells. Answer: Rows 7. The intersection of a row and a column in a memory chip is called a Answer: Memory cell 8. The size of a memory chip is often specified in terms of its capacity. Answer: Storage 9. Memory chips can be accessed in a fashion, allowing for quick data retrieval. Answer: Random 10. The internal organization of a memory chip affects its and speed. Answer: Size			
6. Memory chips are organized into and columns of memory cells. Answer: Rows 7. The intersection of a row and a column in a memory chip is called a Answer: Memory cell 8. The size of a memory chip is often specified in terms of its capacity. Answer: Storage 9. Memory chips can be accessed in a fashion, allowing for quick data retrieval. Answer: Random 10. The internal organization of a memory chip affects its and speed. Answer: Size Static Memories: 11. SRAM is known for its speed and stability. Answer: High			
6. Memory chips are organized into and columns of memory cells. Answer: Rows 7. The intersection of a row and a column in a memory chip is called a Answer: Memory cell 8. The size of a memory chip is often specified in terms of its capacity. Answer: Storage 9. Memory chips can be accessed in a fashion, allowing for quick data retrieval. Answer: Random 10. The internal organization of a memory chip affects its and speed. Answer: Size Static Memories: 11. SRAM is known for its speed and stability. Answer: High 12. Unlike DRAM, SRAM does not require Answer: Refreshing			
6. Memory chips are organized into and columns of memory cells. Answer: Rows 7. The intersection of a row and a column in a memory chip is called a Answer: Memory cell 8. The size of a memory chip is often specified in terms of its capacity. Answer: Storage 9. Memory chips can be accessed in a fashion, allowing for quick data retrieval. Answer: Random 10. The internal organization of a memory chip affects its and speed. Answer: Size Static Memories: 11. SRAM is known for its speed and stability. Answer: High 12. Unlike DRAM, SRAM does not require Answer: Refreshing 13. SRAM cells are typically made up of transistors. Answer: 6			
6. Memory chips are organized into and columns of memory cells. Answer: Rows 7. The intersection of a row and a column in a memory chip is called a Answer: Memory cell 8. The size of a memory chip is often specified in terms of its capacity. Answer: Storage 9. Memory chips can be accessed in a fashion, allowing for quick data retrieval. Answer: Random 10. The internal organization of a memory chip affects its and speed. Answer: Size Static Memories: 11. SRAM is known for its speed and stability. Answer: High 12. Unlike DRAM, SRAM does not require Answer: Refreshing 13. SRAM cells are typically made up of transistors. Answer: 6 14. SRAM is commonly used in caches in computer systems. Answer: CPU			
6. Memory chips are organized into and columns of memory cells. Answer: Rows 7. The intersection of a row and a column in a memory chip is called a Answer: Memory cell 8. The size of a memory chip is often specified in terms of its capacity. Answer: Storage 9. Memory chips can be accessed in a fashion, allowing for quick data retrieval. Answer: Random 10. The internal organization of a memory chip affects its and speed. Answer: Size Static Memories: 11. SRAM is known for its speed and stability. Answer: High 12. Unlike DRAM, SRAM does not require Answer: Refreshing 13. SRAM cells are typically made up of transistors. Answer: 6			
6. Memory chips are organized into and columns of memory cells. Answer: Rows 7. The intersection of a row and a column in a memory chip is called a Answer: Memory cell 8. The size of a memory chip is often specified in terms of its capacity. Answer: Storage 9. Memory chips can be accessed in a fashion, allowing for quick data retrieval. Answer: Random 10. The internal organization of a memory chip affects its and speed. Answer: Size Static Memories: 11. SRAM is known for its speed and stability. Answer: High 12. Unlike DRAM, SRAM does not require Answer: Refreshing 13. SRAM cells are typically made up of transistors. Answer: 6 14. SRAM is commonly used in caches in computer systems. Answer: CPU 15. Static memories are often used in applications where is critical. Answer: Speed			
6. Memory chips are organized into and columns of memory cells. Answer: Rows 7. The intersection of a row and a column in a memory chip is called a Answer: Memory cell 8. The size of a memory chip is often specified in terms of its capacity. Answer: Storage 9. Memory chips can be accessed in a fashion, allowing for quick data retrieval. Answer: Random 10. The internal organization of a memory chip affects its and speed. Answer: Size Static Memories: 11. SRAM is known for its speed and stability. Answer: High 12. Unlike DRAM, SRAM does not require Answer: Refreshing 13. SRAM cells are typically made up of transistors. Answer: 6 14. SRAM is commonly used in caches in computer systems. Answer: CPU			

17.	Refreshing of data is required in DRAMs. Answer: Asynchronous
18. 19.	DRAMs are slower than their synchronous counterparts. Answer: Asynchronous Asynchronous DRAMs are commonly used in older computer Answer: Systems
20.	Asynchronous DRAMs have a interface for data access. Answer: Parallel
Sync	chronous DRAMs:
21. S	synchronous DRAMs use a signal to synchronize data transfers. Answer: Clock
22.	The clock signal in Synchronous DRAMs ensures and reliable data access. ver: Synchronized
23.	
	SDRAMs are often used in modern and laptops. Answer: PCs
25. DRAI	Synchronous DRAMs offer data transfer rates compared to asynchronous Ms. Answer: Higher
	cture of Large Memories:
Struc	cture of Large Memories.
26. L	arge memory systems often use multiple smaller memory Answer: Modules
27.	Memory modules are typically connected to a bus. Answer: Memory
28.	<i>y y y y y y y y y y</i>
29.	The structure of large memories involves addressing and schemes. Answer: leaving
30.	Memory system architects consider factors like, size, and cost when designing
	e memory systems. Answer: Speed
Shor	rt Type Question Answer
Char	racter Codes:
1.	What is ASCII?
1.	ASCII stands for American Standard Code for Information Interchange. It's a
	character encoding standard for representing text and control characters using 7 or 8
	bits.
2.	What is Unicode?
	Unicode is a character encoding standard that aims to represent every character
	from every language in the world, including symbols and emojis.
Deci	mal System:
3.	How many digits are in the decimal system?
	The decimal system has 10 digits, from 0 to 9.
4.	What is the place value of the rightmost digit in a decimal number?
	The rightmost digit in a decimal number has a place value of 1.
Rina	ry System:
DIIId	ry System:

- 5. How many digits are in the binary system?
 - The binary system has 2 digits, 0 and 1.
- 6. What is the place value of the rightmost digit in a binary number?
 - The rightmost digit in a binary number has a place value of 1.

Decimal to Binary Conversion:

- 7. How do you convert the decimal number 10 to binary?
 - 10 in binary is 1010.
- 8. How do you convert the decimal number 25 to binary?
 - 25 in binary is 11001.

Hexadecimal Notation:

- 9. What is hexadecimal notation?
 - Hexadecimal notation is a base-16 numbering system that uses digits 0-9 and letters A-F to represent values.
- 10. What is the decimal equivalent of the hexadecimal number 1A?
 - The decimal equivalent of 1A in hexadecimal is 26.

Boolean Algebra:

- 11. What is Boolean algebra?
 - Boolean algebra is a mathematical system for working with binary variables and logic operations, such as AND, OR, and NOT.
- 12. What is the complement of a Boolean variable?
 - The complement (NOT) of a Boolean variable A is denoted as ¬A or A'.

Electronic Logic Gates:

- 13. What is an AND gate?
 - An AND gate performs a logical AND operation and outputs true (1) only if all its inputs are true.
- 14. What is an OR gate?
 - An OR gate performs a logical OR operation and outputs true (1) if at least one of its inputs is true.

Synthesis of Logic Functions:

- 15. What is logic function synthesis?
 - Logic function synthesis is the process of creating complex logic functions from simpler ones using logic gates.
- 16. How do you create an XOR gate using basic gates?
 - An XOR gate can be created using OR, AND, and NOT gates: $XOR = (A AND \neg B) OR (\neg A AND B)$.

Minimization of Logic Expressions:

- 17. What is the goal of logic expression minimization?
 - The goal is to reduce the number of logic gates required to implement a given logic function.
- 18. What is the term used for the smallest unit of a logic expression?
 - The term used is a "minterm" or "maxterm" depending on whether it's a sumof-products or product-of-sums expression.

Minimization using Karnaugh Maps:

- 19. What is a Karnaugh map?
 - A Karnaugh map is a graphical representation used to simplify Boolean expressions and minimize logic circuits.
- 20. How many cells can a 2-variable Karnaugh map have?
 - A 2-variable Karnaugh map can have 4 cells.

Synthesis with NAND and NOR Gates:

- 21. What are NAND and NOR gates?
 - NAND and NOR gates are universal gates, meaning they can be used to implement any other gate.
- 22. How do you create an AND gate using NAND gates?
 - An AND gate can be created using NAND gates by connecting two NAND gates in series.

Tri-State Buffers:

- 23. What is a tri-state buffer?
 - A tri-state buffer is a digital logic gate that can assume one of three output states: high, low, or high-impedance (disconnected).
- 24. When is a tri-state buffer typically used?
 - Tri-state buffers are used in bus systems to control the flow of data on a shared bus.

Arithmetic: Addition and Subtraction of Signed Numbers:

- 25. What is the Two's Complement representation?
 - Two's Complement is a method for representing signed integers in binary, making addition and subtraction simpler.
- 26. How do you add two binary numbers in Two's Complement form?
 - Add the numbers as if they were unsigned, and discard any carry out of the most significant bit.

Addition/Subtraction Logic Unit:

- 27. What is an ALU (Arithmetic Logic Unit)?
 - An ALU is a digital circuit within a computer's CPU that performs arithmetic and logic operations.
- 28. What is the purpose of the carry flag in an ALU?

• The carry flag is set if an arithmetic operation generates a carry or borrow, indicating overflow.

Design of Fast Adders: Carry-Lookahead Addition:

- 29. What is carry-lookahead addition?
 - Carry-lookahead addition is a method to speed up addition by generating carry signals in parallel.
- 30. How does carry-lookahead differ from ripple-carry addition?
 - Carry-lookahead generates carry signals in parallel, while ripple-carry propagates carry from one bit to the next.

Multiplication of Positive Numbers:

- 31. How do you multiply two binary numbers?
 - Use a series of shifts and additions to multiply two binary numbers.
- 32. What is the result of multiplying any number by 0 in binary?
 - The result is always 0, as in any base.

Signed Operand Multiplication: Booth Algorithm:

- 33. What is the Booth Algorithm used for?
 - The Booth Algorithm is used for efficient multiplication of signed binary numbers.
- 34. How does the Booth Algorithm work?
 - It reduces the number of additions by using a sliding window approach to handle groups of consecutive 1s or 0s in the multiplier.

Fast Multiplication: Bit-Pair Recording Multipliers:

- 35. What is a bit-pair recording multiplier?
 - It's a multiplication algorithm that reduces the number of partial products by recording pairs of bits in the multiplier.
- 36. How does bit-pair recording improve multiplication?
 - It reduces the number of partial products and, therefore, the number of additions needed.

Carry-Save Addition of Summands:

- 37. What is carry-save addition?
 - Carry-save addition is a method used to add multiple numbers in parallel, reducing carry propagation delay.
- 38. When is carry-save addition commonly used?
 - It's used in the accumulation phase of digital signal processing algorithms.

Integer Division:

39. What is integer division?

- Integer division is the process of dividing one integer by another, discarding any fractional part.
- 40. What happens when you divide by zero in integer division?
 - Division by zero is undefined in integer division and typically results in an error.

Floating-Point Numbers and Operations: IEEE Standard for Floating-Point Numbers:

- 41. What is the IEEE standard for floating-point numbers?
 - The IEEE 754 standard defines the representation and operations of floating-point numbers in computing.
- 42. How are floating-point numbers represented in IEEE 754?
 - They are represented with three parts: sign bit, exponent, and fraction (mantissa).

Arithmetic Operations on Floating-Point Numbers:

- 43. What arithmetic operations can be performed on floating-point numbers?
 - You can perform addition, subtraction, multiplication, and division on floatingpoint numbers.
- 44. What is the result of adding infinity to a finite number in IEEE 754?
 - The result is positive or negative infinity, depending on the signs.

Guard Bits and Truncation:

- 45. What are guard bits in floating-point operations?
 - Guard bits are extra bits used to ensure accuracy during intermediate calculations.
- 46. What is truncation in floating-point arithmetic?
 - Truncation involves rounding or chopping off extra bits beyond a certain precision.

Implementing Floating-Point Operations:

- 47. How are floating-point operations implemented in hardware?
 - They are implemented using specialized circuits or software libraries that adhere to IEEE 754 standards.

Flip-Flops:

- 48. What is a flip-flop?
 - A flip-flop is a sequential logic circuit element used to store binary information.
- 49. How does a D flip-flop differ from a T flip-flop?
 - A D flip-flop has a data input, while a T flip-flop toggles its state based on a clock signal.

Gated Latches:

50. What is a gated latch?

- A gated latch is a sequential circuit that stores data when enabled by a control signal.
- 51. What is the key difference between a latch and a flip-flop?
 - Latches are level-sensitive and can change their output as long as the enable signal is active, while flip-flops are edge-triggered and change only on clock edges.

Master-Slave Flip-Flops:

- 52. What is a master-slave flip-flop?
 - A master-slave flip-flop consists of two interconnected flip-flops, one master and one slave, which provide improved timing characteristics.
- 53. Why are master-slave flip-flops used?
 - They help eliminate glitches and improve stability in sequential circuits.

Edge-Triggering:

- 54. What is edge-triggering in flip-flops?
 - Edge-triggering means that a flip-flop's output changes only on a specific edge (rising or falling) of the clock signal.
- 55. How does edge-triggering improve flip-flop performance?
 - It reduces the chance of glitches and ensures consistent behavior.

T Flip-Flops:

- 56. What is a T flip-flop?
 - A T flip-flop toggles its output state when the clock signal transitions from one edge to another, based on the T (toggle) input.
- 57. How can you use T flip-flops to divide a clock frequency by 2?
 - Connect the output of one T flip-flop to the T input of another in a chain.

JK Flip-Flops:

- 58. What is a JK flip-flop?
 - A JK flip-flop is a type of flip-flop that can serve as a T flip-flop, SR flip-flop, or D flip-flop depending on its inputs.
- 59. What is the J-K input in a JK flip-flop used for?
 - The J-K input controls whether the flip-flop toggles, resets, or sets when clocked.

Registers and Shift Registers:

- 60. What is a register?
 - A register is a group of flip-flops used to store binary data temporarily.
- 61. What is a shift register?
 - A shift register is a type of register that can shift data in or out serially.

Counters:

- 62. What is a counter in digital electronics?
 - A counter is a sequential circuit that counts, either up or down, based on clock pulses.
- 63. What is a decade counter?
 - A decade counter is a counter that counts from 0 to 9 and then resets, commonly used in BCD applications.

Decoders:

- 64. What is a decoder?
 - A decoder is a combinational logic circuit that converts a binary code into a set of output lines.
- 65. How many output lines does a 3-to-8 decoder have?
 - A 3-to-8 decoder has 8 output lines.

Multiplexers:

- 66. What is a multiplexer (MUX)?
 - A multiplexer is a combinational circuit that selects one of many input lines and forwards it to a single output line.
- 67. How is the selection of input in a multiplexer determined?
 - It's determined by the values of select lines or control inputs.

Programmable Logic Devices (PLDs):

- 68. What are Programmable Logic Devices (PLDs)?
 - PLDs are digital devices that can be programmed to perform custom logic functions.
- 69. What is a common type of PLD?
 - Field-Programmable Gate Arrays (FPGAs) are a common type of PLD.

Programmable Array Logic (PAL):

- 70. What is PAL (Programmable Array Logic)?
 - PAL is a type of programmable logic device with a fixed OR array and a programmable AND array.
- 71. How does PAL differ from a PLA (Programmable Logic Array)?
 - PAL has a fixed OR array, while PLA has both programmable AND and OR arrays.

Complex Programmable Logic Devices (CPLDs):

- 72. What are CPLDs?
 - CPLDs are a type of programmable logic device that offers a compromise between PLAs and FPGAs.
- 73. What is the primary advantage of CPLDs?
 - CPLDs are faster than FPGAs for many tasks and have lower power consumption.

Field-Programmable Gate Array (FPGA):

- 74. What is an FPGA?
 - An FPGA is a programmable integrated circuit that allows users to implement custom digital logic circuits.
- 75. What are some typical applications of FPGAs?
 - FPGAs are used in digital signal processing, hardware acceleration, prototyping, and more.

Sequential Circuits:

- 76. What is a sequential circuit?
 - A sequential circuit is a digital circuit with memory elements, like flip-flops, which allow it to store past inputs and state.
- 77. How does a sequential circuit differ from a combinational circuit?
 - A combinational circuit's output depends only on its current inputs, while a sequential circuit's output depends on both inputs and past state.

UP/DOWN Counters:

- 78. What is an up/down counter?
 - An up/down counter can count both upward and downward, depending on a control input.
- 79. How do you implement an up/down counter using a D flip-flop?
 - By using a D flip-flop with an inverted input for counting down.

Timing Diagrams:

- 80. What is a timing diagram?
 - A timing diagram visually represents the behavior of digital signals over time.
- 81. How are clock signals represented in a timing diagram?
 - Clock signals are often shown as square waves with rising and falling edges.

The Finite State Machine Model:

- 82. What is a finite state machine (FSM)?
 - An FSM is an abstract machine that can be in a finite number of states and transitions between these states based on inputs.
- 83. What is the difference between Mealy and Moore state machines?
 - In a Mealy machine, the output depends on both current state and inputs, while in a Moore machine, the output depends only on the current state.

Synthesis of Finite State Machines:

- 84. What is synthesis in the context of finite state machines?
 - Synthesis involves designing and implementing a finite state machine using digital logic circuits.
- 85. What are state transition diagrams used for?

• State transition diagrams visually represent the behavior of a finite state machine.

Memory System: Semiconductor RAM Memories:

- 86. What is RAM (Random Access Memory)?
 - RAM is a type of volatile computer memory that can be read from and written to.
- 87. What is the difference between SRAM and DRAM?
 - SRAM (Static RAM) is faster but more expensive than DRAM (Dynamic RAM) and does not require refreshing.

Internal Organization of Memory Chips:

- 88. How are memory cells typically organized within a memory chip?
 - Memory cells are organized as rows and columns in a matrix.
- 89. What is a memory word?
 - A memory word is the amount of data that can be read or written in a single operation.

Static Memories:

- 90. What are static memories?
 - Static memories, like SRAM, retain data as long as power is applied and do not require periodic refresh.
- 91. Where are static memories commonly used?
 - Static memories are used in CPU caches and other high-speed storage.

Asynchronous DRAMs:

- 92. What is DRAM (Dynamic Random Access Memory)?
 - DRAM is a type of volatile computer memory that requires periodic refreshing.
- 93. Why is DRAM called "dynamic"?
 - DRAM needs refreshing because it stores data in capacitors, which slowly leak charge over time.

Synchronous DRAMs:

- 94. What is SDRAM (Synchronous Dynamic RAM)?
 - SDRAM is a type of DRAM that synchronizes memory operations with a clock signal.
- 95. How does SDRAM improve memory performance?
 - SDRAM allows for higher memory bandwidth by synchronizing access to memory cells.

Structure of Large Memories:

96. How are large memories constructed?

- Large memories are typically constructed by connecting multiple smaller memory chips.
- 97. What is interleaved memory?
 - Interleaved memory uses multiple memory banks to increase memory access speed.

Memory System Considerations:

- 98. What factors should be considered when designing a memory system?
 - Factors include speed, capacity, power consumption, and cost.
- 99. What is memory latency?
 - Memory latency is the time delay between requesting data from memory and receiving it.

RAMBUS Memory:

- 100. What is Rambus memory?
 - Rambus memory is a high-speed memory technology designed for increased bandwidth and data transfer rates.

Long Type Questions

- 1. What are character codes, and how do they differ from numeric codes in digital systems?
- 2. Explain the decimal numbering system and its significance in digital electronics.
- 3. Describe the binary numbering system and its application in computer architecture.
- 4. Walk through the process of converting a decimal number to binary.
- 5. What is hexadecimal notation, and why is it commonly used in programming and digital systems?
- 6. How does Boolean algebra contribute to the design of digital circuits?
- 7. Define basic logic functions and provide examples of electronic logic gates for each function.
- 8. Explain the synthesis of logic functions and its role in designing complex digital circuits.
- 9. Discuss the minimization of logic expressions and its importance in circuit optimization.
- 10. How are Karnaugh maps used to simplify logic functions and reduce circuit complexity?
- 11. Describe the synthesis of logic functions using NAND and NOR gates, highlighting their advantages.
- 12. What is the purpose of tri-state buffers in digital circuits, and how are they implemented?
- 13. Explain the principles behind arithmetic operations like addition and subtraction of signed numbers in binary.
- 14. Describe the architecture and operation of an addition/subtraction logic unit.
- 15. How does a carry-lookahead addition circuit improve the speed of addition operations?
- 16. Outline the multiplication of positive numbers and its importance in digital arithmetic.

- 17. Discuss the Booth algorithm for signed operand multiplication and its efficiency.
- 18. Explain the concept of fast multiplication using bit-pair recoding multipliers.
- 19. Describe the carry-save addition method for summing multiple operands.
- 20. What are the challenges involved in performing integer division in digital systems?
- 21. Provide an overview of floating-point numbers and their representation using the IEEE Standard.
- 22. Describe the basic arithmetic operations (addition, subtraction, multiplication, division) on floating-point numbers.
- 23. Explain the purpose of guard bits and truncation in floating-point arithmetic.
- 24. How are floating-point operations implemented in hardware?
- 25. Differentiate between flip-flops, gated latches, and master-slave flip-flops in sequential circuits.
- 26. Discuss the concept of edge-triggering in flip-flops and its significance.
- 27. Explain the characteristics and applications of T flip-flops.
- 28. Describe the working principles and applications of JK flip-flops.
- 29. What are registers, and how are they used in digital systems?
- 30. Discuss the functionality and applications of shift registers.
- 31. Explain the operation of counters and their various types in digital circuits.
- 32. How do decoders work, and what are their roles in digital systems?
- 33. Describe multiplexers and their applications in data routing and selection.
- 34. What are Programmable Logic Devices (PLDs), and how are they programmed?
- 35. Discuss the architecture and functionality of Programmable Array Logic (PAL) devices.
- 36. Explain the characteristics of Complex Programmable Logic Devices (CPLDs).
- 37. What is a Field-Programmable Gate Array (FPGA), and how does it differ from other programmable devices?
- 38. Describe sequential circuits and their importance in digital systems.
- 39. Discuss the operation of UP/DOWN counters and their applications.
- 40. Create timing diagrams for simple digital circuits to illustrate their behavior.
- 41. Explain the Finite State Machine (FSM) model and its role in digital design.
- 42. How are Finite State Machines synthesized from state diagrams?
- 43. What are semiconductor RAM memories, and how do they store data?
- 44. Describe the internal organization of memory chips and their components.
- 45. Differentiate between static RAM (SRAM) and dynamic RAM (DRAM) technologies.
- 46. Explain the operation of asynchronous DRAMs and their advantages.
- 47. Discuss the principles of synchronous DRAMs and their use in modern memory systems.
- 48. What considerations are important in designing large memory structures?
- 49. Explain the architecture and characteristics of RAMBUS memory.
- 50. Describe various types of Read-Only Memories (ROMs), including PROM, EPROM, EEPROM, and Flash Memory, highlighting their differences in terms of speed, size, and cost.