QUESTION BANK REAL ANALYSIS P-102

1 mark questions

- 1. Define the Riemann-Stieltjes integral: $\int f(x) d\alpha(x)$.
- Give the conditions for the existence of the Riemann-Stieltjes integral: ∫
 f(x) dα(x) exists if...
- 3. Calculate the Riemann-Stieltjes integral: $\int x^2 d\alpha(x)$ where $\alpha(x) = \sin(x)$.
- 4. Prove the linearity property of the Riemann-Stieltjes integral.
- 5. Evaluate $\int \cos(x) d|x|$ over the interval $[-\pi, \pi]$.
- 6. Differentiate the function $F(x) = \int_0^{\infty} e^{t} d\alpha(t)$.
- 7. State and prove the integration by parts formula for the Riemann-Stieltjes integral.
- 8. Show that if $\alpha(x)$ is continuous, then $\int f(x) d\alpha(x)$ is also continuous.
- 9. Define the pointwise convergence of a sequence of functions: lim (n → ∞) f_n(x) = f(x) for all x ∈ domain(f).
- 10.Prove that a uniformly convergent sequence of continuous functions has a continuous limit.
- 11.Determine whether the sequence of functions $f_n(x) = x^n$ on the interval [0, 1] converges uniformly or not.
- 12.Calculate the limit of the sequence of functions $f_n(x) = n \sin(x/n)$ as n approaches infinity.
- 13. Show that if $f_n \to f$ uniformly, then $\int f_n(x) dx \to \int f(x) dx$ as $n \to \infty$.
- 14.Differentiate the function $f(x) = \sum_{n=1}^{\infty} x^n$ with respect to x.
- 15.Prove that the sequence of functions $f_n(x) = 1/(1 + nx)$ converges uniformly on [0, 1].
- 16. Evaluate the limit of the series $\sum_{n=1}^{\infty} (-1)^n/n^2$.
- 17. Define the Lebesgue measure of a set A: m(A) = ?
- 18.Show that the Lebesgue measure of an interval [a, b] is equal to its length: m([a, b]) = ?
- 19. Give an example of a non-measurable set on the real line.
- 20.Prove that the union of countably many Lebesgue measurable sets is also measurable.
- 21.Evaluate the Lebesgue integral: $\int_0^1 x^2 d\lambda$, where λ is the Lebesgue measure.
- 22.Show that a Riemann integrable function on a closed interval is also Lebesgue integrable.
- 23.Prove that if f(x) is non-negative and Lebesgue integrable, then $\int f(x) dx \ge 0$.
- 24.Discuss the relationship between outer measure and Lebesgue measure.
- 25.State the differentiation theorem for monotone functions.

- 26.Prove that a function of bounded variation is differentiable almost everywhere.
- 27.Define absolute continuity of functions and its relation to the Lebesgue integral.
- 28.Show that the space C([a, b]) of continuous functions on [a, b] is a Banach space.
- 29. Evaluate the variation of the function $f(x) = x^2$ on the interval [0, 1].
- 30.Define the Lp space, $1 \le p < \infty$, and show that it is a Banach space.
- 31. Prove that the L^{∞} norm is equal to the essential supremum norm.
- 32. Prove the Cauchy criterion for uniform convergence of functions.
- 33.Differentiate the function $f(x) = \ln|x|$ using the Riemann-Stieltjes integral with respect to the function $\alpha(x) = x^2$.
- 34. Evaluate $\int_0^{\pi} e^x \sin(x) dx$.
- 35.Show that the sequence of functions $f_n(x) = n^2x(1-x)^n$ converges uniformly on the interval [0, 1].
- 36.Prove that the set of discontinuities of a Riemann-Stieltjes integrable function is of Lebesgue measure zero.
- 37.Differentiate the function $F(x) = \int_0^x e^t dt$ with respect to x.
- 38.Evaluate the limit of the sequence of functions $f_n(x) = n^2 \sin(x/n)$ as n approaches infinity.
- 39. Prove that if $f_n \to f$ uniformly, then $\lim (n \to \infty) \int_0^{-1} f_n(x) dx = \int_0^{-1} f(x) dx$.

2/3 marks questions

- 1. State and prove the Mean Value Theorem for the Riemann-Stieltjes integral.
- 2. Find the Riemann-Stieltjes integral of $f(x) = x^2$ with respect to $\alpha(x) = e^x$ on the interval [0, 1].
- 3. Prove that if $\alpha(x)$ is of bounded variation on [a, b], then the set of points where $\alpha(x)$ is discontinuous is countable.
- 4. Differentiate the function $F(x) = \int_0^x \sin(t) d\alpha(t)$ with respect to x, where $\alpha(x) = x^2$.
- 5. Discuss the relation between the Riemann integral and the Riemann-Stieltjes integral.
- 6. Define pointwise convergence and uniform convergence of a sequence of functions.
- 7. State the Weierstrass M-Test for uniform convergence of a series of functions.

- Differentiate the series representation of the function f(x) = ln(1+x) term-by-term.
- 9. Prove that if a sequence of functions {f_n} is uniformly convergent, then it is also bounded.
- 10.Show that the series $\sum_{n=1}^{\infty} \frac{x^n}{1+x^n}$ converges uniformly on [0, 1].
- 11. Prove that the Lebesgue measure of the Cantor set is zero.
- 12. Evaluate the Lebesgue integral: $\int_0^1 x^2 d\lambda$, where λ is the Lebesgue measure.
- 13.Define a Lebesgue measurable function and prove that the pointwise limit of a sequence of measurable functions is measurable.
- 14. Prove that the set of rational numbers on the real line is not Lebesgue measurable.
- 15.Discuss the relationship between the Lebesgue integral and the Riemann-Stieltjes integral.
- 16.State the Lebesgue's differentiation theorem and its significance in real analysis.
- 17.Differentiate the function f(x) = ∫_0^x e^t dt with respect to x using the Fundamental Theorem of Calculus.
- 18.Prove that the space C([a, b]) of continuous functions on [a, b] is a Banach space.
- 19.Define the space L^p([a, b]) for 1 ≤ p < ∞, and show that it is a Banach space.
- 20.Prove the Holder's inequality for two functions f(x) and g(x) with exponents p and q satisfying 1/p + 1/q = 1.
- 21.Differentiate the function F(x) = ∫_0^(x^2) e^t dt using the chain rule and the Fundamental Theorem of Calculus.
- 22. Evaluate the limit of the sequence of functions $f_n(x) = n \sin(\pi x/n)$ as n approaches infinity.
- 23.Show that if $f_n \rightarrow f$ uniformly and $g_n \rightarrow g$ uniformly, then $f_n + g_n \rightarrow f + g$ uniformly.
- 24. Prove that a Riemann-Stieltjes integrable function on a closed interval is also Lebesgue integrable.
- 25. Evaluate $\int_0^{\pi} x \sin(x) dx$ using integration by parts.

6/7 marks questions

- 1. Prove the Riemann-Stieltjes integration by parts formula: $\int f(x) d\alpha(x) \cdot g(x) = f(x) \cdot g(x) | [a, b] \int g(x) d\beta(x) \cdot f'(x) dx / [a, b], where <math>\alpha(x)$ and $\beta(x)$ are increasing functions and f(x) is continuously differentiable on [a, b].
- 2. Using the Riemann-Stieltjes integral, evaluate $\int_0^1 x^2 d\alpha(x)$, where $\alpha(x)$ is the floor function.
- 3. Prove that if $\alpha(x)$ is of bounded variation on [a, b], then the set of points where $\alpha(x)$ is discontinuous is countable.
- 4. Show that the Riemann-Stieltjes integral $\int f(x) d\alpha(x)$ exists for a function f(x) that has a jump discontinuity at a point c and $\alpha(x)$ is continuous at c.
- 5. Differentiate the function $F(x) = \int_0^x t \sin(t) d\alpha(t)$ with respect to x, where $\alpha(x) = e^x$.
- 6. Prove that the uniform limit of a sequence of continuous functions is continuous.
- 7. Show that the sequence of functions $f_n(x) = nx/(1 + n^2x^2)$ converges uniformly on the interval [0, 1].
- Differentiate the series representation of the function f(x) = sin(x) termby-term.
- Prove that the series ∑_(n=1)^∞ (x^n)/(1+x^n) converges uniformly on [0, 1].
- 10.State and prove the Dini's theorem for uniform convergence of a sequence of functions.
- 11. Prove that every open interval is Lebesgue measurable and has the same Lebesgue measure as its length.
- 12. Evaluate the Lebesgue integral: $\int_0^1 x^3 d\lambda$, where λ is the Lebesgue measure.
- 13.Define the space L^p([a, b]) for 1 ≤ p < ∞ and show that it is a Banach space.
- 14. Prove that the Lebesgue integral of a non-negative Lebesgue measurable function f(x) is always non-negative.
- 15.Show that if $f_n(x) \rightarrow f(x)$ pointwise for Lebesgue measurable functions on [a, b], and there exists a Lebesgue integrable function g(x) such that $|f_n(x)| \le g(x)$ for all n, then f(x) is Lebesgue integrable.

- 16.Prove the Lebesgue's differentiation theorem: If $f \in L^1([a, b])$, then the function $F(x) = \int_a^x f(t) dt$ is differentiable almost everywhere on [a, b] and F'(x) = f(x) almost everywhere.
- 17. Evaluate the derivative of the function $F(x) = \int_0^x e^t dt$ using the Lebesgue differentiation theorem.
- 18.Define absolute continuity of functions and prove that an absolutely continuous function is uniformly continuous.
- 19. Show that the space $L^p([a, b])$ for $1 \le p < \infty$ is a Banach space.
- 20.Prove Holder's inequality for two functions f(x) and g(x) with exponents p and q satisfying 1/p + 1/q = 1.
- 21. Prove the convergence of the series $\sum_{n=1}^{\infty} (1 1/n)^n$.
- 22.Show that if $f_n \rightarrow f$ uniformly and $g_n \rightarrow g$ uniformly, then $f_n \cdot g_n \rightarrow f$ \cdot g uniformly.
- 23.Evaluate the limit of the sequence of functions f_n(x) = (1 + x/n)^n as n approaches infinity.
- 24.Prove that if f_n is a sequence of Riemann-Stieltjes integrable functions on [a, b] converging uniformly to f and α is an increasing function of bounded variation, then f is Riemann-Stieltjes integrable with respect to α.
- 25. Using the Lebesgue's differentiation theorem, find the derivative of the function $F(x) = \int_0^{x^2} e^t dt$.