DIFFERENTIAL GEOMETRY
 PAPER- 302

1 mark questions

1. Define the tangent of a curve in 2D space.
2. What is the contact of two curves?
3. Explain the concept of the osculating plane of a curve.
4. Define the principal normal of a curve.
5. What is the binormal of a curve in 3D space?
6. Define curvature of a curve at a given point.
7. Explain the concept of torsion of a curve.
8. State the Serret-Frenet formula for a curve in 3D space.
9. Define the osculating circle of a curve at a given point.
10. What is the osculating sphere of a curve?
11. Define a ruled surface.
12. What is a developable surface?
13. Explain the concept of a tangent plane to a ruled surface.
14. State the necessary and sufficient condition for a surface $f=0$ to be developable.
15. Define the metric of a surface.
16. Explain the first fundamental form of a surface.
17. What are the second and third fundamental forms of a surface?
18. Define the Gaussian curvature of a surface.
19. What is an umbilic point on a surface?
20. Define the radius of curvature of a normal section at an umbilic point.
21. Define the normal curvature of a surface at a given point.
22. Explain Meunier's theorem related to normal curvature.
23. Define the lines of curvature on a surface.
24. What are the principal radii of a surface at a given point?
25. State the relation between the fundamental forms of a surface.
26. Define principal directions on a surface.
27. What are the principal curvatures of a surface at a given point?

28 . Define the mean curvature of a surface.
29. What is the first curvature of a surface?
30. Explain the concept of Gaussian curvature of a surface.
31.State the relationship between the Gaussian curvature and the principal curvatures of a surface.
32. Define an umbilic point on a surface.
33. What is the radius of curvature of a normal section at an umbilic point $Z=F(x, y)$?
34. Calculate the radius of curvature at a given section through any point of $Z=F(x, y)$.
35. Define asymptotic lines on a surface.
36. What are the fundamental magnitudes of some important surfaces?
37. Define the concept of orthogonal trajectories on a surface.
38. State the Existence and Uniqueness theorem for curves.
39. Explain the characteristics of a Bertrand curve.
40. Define the involute of a curve.
41. Explain the concept of the evolute of a curve.
42. Define the concept of ruled surfaces.
43. What is a developable surface?
44. Explain the tangent plane condition for a ruled surface.
45. State the necessary and sufficient condition for a surface $f=0$ to represent a developable surface.
46. Define the metric of a surface.
47. Explain the first, second, and third fundamental forms of a surface.
48. What are the fundamental magnitudes of a surface?
49. Define orthogonal trajectories on a surface.
50. State Meunier's theorem related to the normal curvature of a surface.

2/3 marks questions

1. Define the tangent vector of a curve at a point P in $2 D$ space, denoted as $T(P)$.
2. Given two curves $C 1$ and $C 2$, define the contact of curves $C 1$ and $C 2$ at a common point P, denoted as $\mathrm{C} 1 \cap \mathrm{C} 2$ at P.
3. Explain the concept of the osculating plane of a curve C at a point P, denoted as $\pi(P)$.
4. Define the principal normal vector of a curve C at a point P, denoted as $N(P)$.
5. What is the binormal vector of a curve C at a point P in 3D space, denoted as $B(P)$?
6. Define the curvature of a curve C at a point P, denoted as $k(P)$.
7. Explain the concept of torsion of a curve C at a point P, denoted as $\tau(P)$.
8. State the Serret-Frenet formula for a curve C in 3D space.
9. Define the osculating circle of a curve C at a point P, denoted as $C(P)$.
10. What is the osculating sphere of a curve C at a point P, denoted as $S(P)$?
11. Define a ruled surface S generated by two curves $C 1$ and $C 2$, denoted as $S=\{P(u$, $v)=(1-u) C 1(v)+u C 2(v) \backslash \mid u, v \backslash$ in \backslash mathbb $\{R\}\}$.
12. What is a developable surface S formed by a family of straight lines, denoted as S $=\{P(u, v)=C(u)+v N(u) \backslash \mid u, v \backslash i n \backslash m a t h b b\{R\}\} ?$
13. Explain the concept of a tangent plane to a ruled surface S at a point $P(u, v)$, denoted as T_\{P\}(S).
14. State the necessary and sufficient condition for a surface $f(x, y, z)=0$ to be developable.
15. Define the metric tensor G of a surface S at a point $P(u, v)$, denoted as $G _\{i j\}(u, v)$.
16. Explain the first fundamental form of a surface S at a point $P(u, v)$, denoted as $I(u$, v).
17. What are the second fundamental form and third fundamental form of a surface S at a point $P(u, v)$, denoted as $I I(u, v)$ and $I I(u, v)$ respectively?
18. Define the Gaussian curvature K of a surface S at a point $P(u, v)$, denoted as $K(u$, v).
19. What is an umbilic point $P(u, v)$ on a surface S where the principal curvatures are equal, denoted as K_1(u, v) = K_2(u, v)?
20. Define the radius of curvature ρ of a normal section at an umbilic point $P(u, v)$, denoted as $\rho(\mathrm{u}, \mathrm{v})$.
21.Define the normal curvature $k _n$ of a surface S at a point $P(u, v)$, denoted as k_n(u, v).
22.State Meunier's theorem related to the normal curvature $k _n$ of a surface S at a point $P(u, v)$.
21. Define the lines of curvature on a surface S, denoted as $L _1$ and $L _2$.
22. What are the principal radii of a surface S at a point $P(u, v)$, denoted as $R _1(u, v)$ and R_2(u, v)?
23. State the relation between the first and second fundamental forms of a surface S at a point $P(u, v)$.
24. Define the principal directions on a surface S at a point $P(u, v)$, denoted as e_1(u, v) and e_2(u, v).
25. What are the principal curvatures $k _1(u, v)$ and $k _2(u, v)$ of a surface S at a point P(u, v)?
26. Define the mean curvature H of a surface S at a point $P(u, v)$, denoted as $H(u, v)$.
27. What is the first curvature $k _1(u, v)$ of a surface S at a point $P(u, v)$?
28. Explain the concept of the Gaussian curvature K of a surface S at a point $P(u, v)$.
29. State the relationship between the Gaussian curvature $K(u, v)$ and the principal curvatures $k _1(u, v)$ and $k _2(u, v)$ of a surface S at a point $P(u, v)$.
30. Define an umbilic point $P(u, v)$ on a surface S where the principal curvatures are equal, denoted as k_1(u, v) = k_2(u, v).
31. What is the radius of curvature $\rho(u, v)$ of a normal section through a point $P(u, v)$ on a surface S represented by $Z=F(x, y)$?
32. Calculate the radius of curvature $\rho(u, v)$ at a given section through any point of a surface S represented by $Z=F(x, y)$.
33. Define asymptotic lines on a surface S, denoted as $L_{-} a 1$ and $L_{-} a 2$.
34. What are the fundamental magnitudes (L, M, N) of some important surfaces, where the first and second fundamental forms are given?
35. Define the concept of orthogonal trajectories on a surface S.
36. State the Existence and Uniqueness theorem for curves in 2D space.
37. Explain the characteristics of a Bertrand curve.
38. Define the involute of a curve in 2D space.
39. Explain the concept of the evolute of a curve in 2D space.
40. Define the concept of ruled surfaces.
41. What is a developable surface?
42. Explain the tangent plane condition for a ruled surface S at a point $P(u, v)$.
43. State the necessary and sufficient condition for a surface $f(x, y, z)=0$ to represent a developable surface.
44. Define the metric tensor G of a surface S at a point $P(u, v)$.
45. Explain the first fundamental form I of a surface S at a point $P(u, v)$.
46. What are the second and third fundamental forms II and III of a surface S at a point $\mathrm{P}(\mathrm{u}, \mathrm{v})$?
47. Define the Gaussian curvature K of a surface S at a point $P(u, v)$.
48. State Meunier's theorem related to the normal curvature $k _n$ of a surface S at a point $P(u, v)$.

6/7 marks questions

1. Consider a curve C parametrized by a vector function $r(t)=(x(t), y(t), z(t))$ in $3 D$ space. Derive the expressions for the tangent vector $T(t)$, the principal normal vector $\mathrm{N}(\mathrm{t})$, and the binormal vector $\mathrm{B}(\mathrm{t})$ of the curve.
2. For a space curve C, the curvature $\kappa(t)$ is given by $k(t)=\| d T / d t| |$, and the torsion $\tau(t)$ is given by $\tau(t)=(d T / d t) \cdot\left(d^{\wedge} 2 r / d t \wedge 2\right) \times\left(d^{\wedge} 3 r / d t \wedge 3\right)$. Calculate the curvature and torsion for the helix given by $r(t)=(a \cos (t), a \sin (t), b t)$.
3. Prove that the Serret-Frenet formula for a curve $C(t)=(x(t), y(t), z(t))$ in $3 D$ space is given by $d T / d t=\kappa N$ and $d B / d t=-\tau N$.
4. Given two curves $\mathrm{C} 1(\mathrm{t})$ and $\mathrm{C} 2(\mathrm{t})$ in 3 D space, find their contact points, P , such that $\mathrm{C} 1(\mathrm{t})$ and $\mathrm{C} 2(\mathrm{t})$ have the same tangent and normal vectors at P .
5. A curve $C(t)$ is said to be a Bertrand curve if it has at least two distinct osculating circles at every point. Prove that a curve is a Bertrand curve if and only if its curvature is constant.
6. Derive the equations for the involute and evolute of a plane curve $C(x, y)$ in terms of its curvature $\kappa(x, y)$ and the angle of the tangent $\theta(x, y)$ with the x-axis.
7. For a curve C parametrized by $r(t)=(a \cos (t), a \sin (t), b t)$ in $3 D$ space, find its osculating circle and osculating sphere at any point $\mathrm{P}(\mathrm{t})$.
8. Prove the Existence and Uniqueness theorem for space curves, stating that for any two points P and Q on a curve C, there exists a unique shortest path between P and Q lying entirely on C.
9. Consider the family of curves $C(t)=(a \cos (t)$, $a \sin (t), b t)$ in 3D space, where a and b are constants. Investigate the cases when these curves are geodesics (shortest paths) on a surface.
10. Prove that a surface S given by the equation $z=f(x, y)$ represents a developable surface if and only if the Gaussian curvature K of S is zero everywhere.
11. Show that the tangent plane $T_{-} P(S)$ to a ruled surface S given by $P(u, v)=C(u)+$ $v N(u)$ at any point $P(u, v)$ lies in a fixed direction in 3D space.
12. Prove that a surface S parametrized by $P(u, v)=(x(u, v), y(u, v), z(u, v))$ is developable if and only if there exists a pair of functions $\phi(u)$ and $\psi(v)$ such that $x(u, v)=a(u) \cos (\phi(u)), y(u, v)=a(u) \sin (\phi(u))$, and $z(u, v)=\psi(v)$ for some functions a(u) and $\psi(v)$.
13. Show that a surface S given by the equation $F(x, y, z)=0$ represents a developable surface if and only if the gradient vector $\nabla \mathrm{F}$ is proportional to the normal vector N of S.
14. For a surface S parametrized by $P(u, v)=(x(u, v), y(u, v), z(u, v))$, derive the expression for the first fundamental form $I(u, v)$ and its components g_\{ij\}(u,v).
15. Prove that the first fundamental form I(u, v) of a surface S is invariant under rigid motions (translations and rotations) in 3D space.
16. Derive the expressions for the second fundamental form $I I(u, v)$ and the third fundamental form III(u, v) of a surface S parametrized by $P(u, v)=(x(u, v), y(u, v)$, $z(u, v))$.
17.For a surface S, show that the Gaussian curvature K is given by $K=\left(L N-M^{\wedge} 2\right) /$ ($E G-F^{\wedge} 2$), where E, F, and G are components of the first fundamental form, and L, M, and N are components of the second fundamental form.
17. Consider a surface S with constant Gaussian curvature K. Prove that the mean curvature H of S is given by $H=(E+G) K / 2$.
19.Show that for a surface S with constant Gaussian curvature K, the principal curvatures $k _1$ and $k _2$ are constant and satisfy the relation $k _1 k _2=K$.
18. Derive the expression for the normal curvature $k _n(u, v)$ of a surface S parametrized by $\mathrm{P}(\mathrm{u}, \mathrm{v})$ in the direction of the normal vector $\mathrm{N}(\mathrm{u}, \mathrm{v})$.
19. Prove Meunier's theorem, which states that if a surface S has zero Gaussian curvature K at a point P, then S has zero normal curvature in every direction at P.
20. Show that the lines of curvature on a surface S are the orthogonal trajectories of the lines of curvature on S .
21. Derive the formula for the principal radii of curvature $R _1$ and $R _2$ of a surface S at a point $P(u, v)$ in terms of the first and second fundamental forms.
22. Consider a surface S parametrized by $P(u, v)=(x(u, v), y(u, v), z(u, v))$, and let E, F, and G be components of the first fundamental form, and L, M, and N be components of the second fundamental form. Prove that the normal curvature $k _n$ is given by $k _n=\left(L N-M^{\wedge} 2\right) /\left(E G-F^{\wedge} 2\right)$.
23. Prove that for a surface S with constant Gaussian curvature K, the lines of curvature coincide with the lines of symmetry of S.
24. Derive the expressions for the principal directions e_1 and e_2 and the principal curvatures k_1 and k_2 of a surface S parametrized by $\mathrm{P}(\mathrm{u}, \mathrm{v})$.
27.Show that for a surface S with constant Gaussian curvature K, the principal curvatures k_1 and k_2 are constant and satisfy the relation k_1k_2 = K.
25. Consider a surface S with constant mean curvature H. Prove that the Gaussian curvature K of S is given by $K=H^{\wedge} 2$.
26. Derive the formula for the mean curvature H of a surface S at a point $P(u, v)$ in terms of the first and second fundamental forms.
27. Show that the Gaussian curvature K and the mean curvature H are invariant under isometries (conformal transformations) of the surface S.
