QUESTION BANK

GOVT.(AUTO) COLLEGE ROURKELA
Sub- Mathematics,Paper-C-1
Q.1Answer the followings:
(a) The range of sine hyperbolic function is
(b) The curve of $\mathrm{n}^{\text {th }}$ degree cuts the asymptotes at
(c) Evaluate $\lim (1+\sin x)^{\frac{1}{x}}$

$$
x \rightarrow 0
$$

(d)Write True/False-: Through any point,, six normals can be drawn to conicoid.
(e)The perimeter of the curve $r=2 \cos \theta$ is
(f)Define slant asymptote.
(g) $\int_{0}^{\frac{\pi}{2}} \cos ^{5} x \mathrm{dx}$
(h) Rectification is the process of evaluating the
(i)Area of the surface of revolution of the curve $y=f(x)$ between $x=a$ and $x=b$ is
(j)Quadrature is the process of determining
(k)The length of the arc of the curve $y=\log \sec x$ between $x=0$ and $x=\frac{\pi}{6}$
(l) For what value of t the vector $\vec{a}=2 \hat{\imath}-3 \hat{\jmath}+t \hat{k}, \mathrm{~b}=3 \hat{\imath}-\hat{\jmath}+2 \hat{k}$ are coplanar.
(m)The asymptotes parallel to x-axis for the curve $x^{2} y^{2}+x^{2} y-x y^{2}+x+y+1=0$ are
(n) $D^{n} \log (1+\mathrm{x})=$
(o)If $y=\sin (5-3 x)$ then $y_{n}=$
(p)If $\mathrm{x}=\mathrm{t}-\sin \mathrm{t}, \mathrm{y}=1-\operatorname{cost}$ then value of $\frac{d^{2} y}{d x^{2}}$ at $\frac{\pi}{6}$
(q) The parabola $y^{2}=4 a x$ has __ number of real asymptotes.
(r) $\int_{0}^{\ln 3} \frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} \mathrm{dx}=$
(s) If $\mathrm{f}(\mathrm{x})=\mathrm{x} e^{x}$ then the value of $\mathrm{f}^{\mathrm{n}}(\mathrm{x})$ is
(t) $\int \operatorname{Cosech}^{2}(3 \mathrm{x}) \mathrm{dx}=$
Q.No-2
(a) Determine a, b and c such that the graph of $f(x)=a x^{3}+b x^{2}+c$ has an inflection point and slope 1 at $(-1,2)$.
(b)Find the point of inflection for the function f defined by $f(x)=x^{4}+4 x^{3}-18 x^{2}+9 x-3$
(c) Trace the curve $x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$
(d)Sketch the graph of the conics given by $\mathrm{r}=\frac{6}{2+\cos \theta}$ in polar coordinate.
(e) Find the eccentricity and distance from the pole to the directrix in the following polar equation
a) $r=\frac{6}{2+\cos \theta}$
(b) $\frac{4}{2+3 \cos \theta}$
(f)Find a rotation angle θ to remove xy term $9 x^{2}+24 x y+16 y^{2}-80 x-60 y-100=0$.
(g)Find a formula for the surface area of a sphere of radius r.
(i) Find the area of the surface generated by revolving the curve $x=t^{2}, y=5 t, 0 \leq t \leq 2$ about y-axis.
(j) Transform the equation $x^{2}-y^{2}=25$ when the axes are rotated through 45°
Q.No-3
(a)Find the exact arc length of the curve given parametrically by the equation $\mathrm{x}=\mathrm{a} \cos ^{3} \theta, \mathrm{y}=\mathrm{a} \sin ^{3} \theta$
(b)Use Washer's method, find the volume of the solid that results when the region enclosed by he curves $y=x^{2}, x=y^{2}$ is revolved about y-axis.
(c) Prove that every differentiable vector valued function are continuous but converse is not true.
(d)Find the interval in which $\mathrm{f}(\mathrm{t})=\operatorname{sint} \hat{\imath}-\frac{1}{1-t} \hat{\jmath}+\operatorname{lnt} \hat{k}$ is continuous.
(e) Find the volume of the solid generated by revolving around the x-axis, the area enclosed by $x y=4$ and $x+y=5$,Using the cylindrical shell method and washer Method.
(f)Evaluate $\int \tan ^{4} \mathrm{x} \sec x d x$ by using reduction formula.
(g) If $y=\sin \left(m \sin ^{-1} x\right)$ then show that $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+m^{2} y=0$.
(h)Evaluate $\int \operatorname{Cosec}^{n} x d x$
Q.No-4
(a) Evaluate $\int_{0}^{1} x e^{\sqrt{x}}$ dx using reduction formula.
(b) Trace the curve $\mathrm{r}=\mathrm{a} \sin 3 \theta$
(c)Evaluate $\int_{0}^{\frac{\pi}{2}} \sin ^{8} \mathrm{x} \cos \mathrm{xdx}$.
(d)If $y=\cosh \left(\sin ^{-1} x\right)$ show that $\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-\left(n^{2}+1\right) y_{n}=0$

