LINEAR ALGEBRA CORE-12

1 mark questions

1. Define a vector space.
2. Give an example of a subspace of R^{3}.
3. State the algebraic properties of subspaces.
4. What is the quotient space of a vector space?
5. Define linear combination of vectors.
6. What is the linear span of a set of vectors?
7. Explain linear independence of vectors.
8. Define basis and dimension of a vector space.
9. Calculate the dimension of a subspace spanned by given vectors.
10.Define a linear transformation.
10. What is the null space of a linear transformation?
11. Explain the rank and nullity of a linear transformation.
12. Define a vector space V over a field F.
13. Give an example of a subspace $\mathrm{U} \subseteq \mathrm{V}$.
14. State the closure properties of subspaces.
15. Define the quotient space V/W, where W is a subspace of V .
16. Write the expression for a linear combination of vectors.
18.Define the linear span of a set of vectors $\{\mathrm{v} 1, \mathrm{v} 2, \ldots, \mathrm{vn}\}$.
17. State the condition for linear independence of vectors $\{\mathrm{v} 1, \mathrm{v} 2, \ldots, \mathrm{vn}\}$.
20.Define a basis B for a vector space V.
18. Calculate the dimension of a vector space $\operatorname{dim}(V)$.
22.Define a linear transformation $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$.
19. Write the null space of a linear transformation: $N(T)$.
24.State the rank-nullity theorem: $\operatorname{rank}(T)+\operatorname{nullity}(T)=\operatorname{dim}(V)$.
25.How do you represent a linear transformation using matrices?
26.State the properties of algebra of linear transformations.
20. Define isomorphism between vector spaces.
28.State an isomorphism theorem.
21. What is the dual space of a vector space?
30.Define dual basis and double dual.
31.Explain the transpose of a linear transformation and its matrix in the dual basis.
22. What are annihilators of subsets of a vector space?
23. Briefly explain the concept of fields.
24. Write the matrix representation [T] of a linear transformation T.
35.State the properties of algebra of linear transformations.
25. Define an isomorphism between vector spaces.
37.State the first isomorphism theorem for vector spaces.
38.Define the dual space V^{*} of a vector space V.
26. Write the expression for the dual basis β^{*} of a basis β.
27. Write the transpose of a linear transformation T.
41.Define the annihilator of a subset S of V: Ann(S).
42.Define a field F .
28. Define eigenspace of a linear operator.
29. What does it mean for a linear operator to be diagonalizable?
45.State the Cayley-Hamilton theorem.
46.Explain the concept of an invariant subspace.
30. Define the minimal polynomial of a linear operator.
31. What is an inner product space?
32. State the Gram-Schmidt orthogonalization process.
50.Define the eigenspace $\mathrm{E}(\lambda)$ of a linear operator T .
51.State the condition for a linear operator to be diagonalizable.
33. State Cayley-Hamilton theorem for a linear operator T.
34. Define an invariant subspace under a linear operator T.
35. Write the minimal polynomial $\mu \mathrm{T}(\mathrm{x})$ of a linear operator T .
55.Define an inner product space V with inner product $\langle\cdot, \cdot\rangle$.
56.State the Gram-Schmidt orthogonalization process.
57.Define orthogonal complements of subspaces.
36. State Bessel's inequality.
59.What is the adjoint of a linear operator?
60.Explain the concept of least squares approximation.
61.Define normal and self-adjoint operators.
37. What is an orthogonal projection?
63.State the spectral theorem.
64.Define the orthogonal complement $\mathrm{U} \perp$ of a subspace U .
38. Write Bessel's inequality for an inner product space.
66.Define the adjoint T^{*} of a linear operator T.
39. Write the expression for a least squares approximation solution.
68.Define a normal linear operator.
69.Define a self-adjoint linear operator.
40. Define an orthogonal projection operator P.
41. State the spectral theorem for self-adjoint operators.

2/3 marks questions

1. Prove that the intersection of two subspaces is also a subspace: $U \cap W=$?
2. Show that the set of all 2×2 symmetric matrices forms a subspace of the vector space of 2×2 matrices.
3. Determine if the vectors $\{\mathrm{v} 1, \mathrm{v} 2, \mathrm{v} 3\}$ are linearly independent. Justify your answer.
4. Given a linear transformation $T: \mathbb{R}^{\wedge} 3 \rightarrow \mathbb{R}^{\wedge} 2$, find its matrix representation $[\mathrm{T}]$.
5. Prove that if U and W are subspaces of V, then $U \cap W$ is also a subspace of V.
6. If a set of vectors $\{\mathrm{v} 1, \mathrm{v} 2, \mathrm{v} 3\}$ spans a vector space V , can we remove one vector and still have a spanning set? Explain.
7. Calculate the dimension of the null space of the matrix $A=\left[\begin{array}{lll}1 & 2 & 3 ; 246 ;\end{array} 012\right]$.
8. Given two linear transformations $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ and $\mathrm{U}: \mathrm{W} \rightarrow \mathrm{X}$, find the matrix representation of the composition $\mathrm{U} \circ \mathrm{T}$.
9. Prove that the sum of the dimensions of a subspace and its orthogonal complement is equal to the dimension of the whole space.
10. Show that the set of all 2×2 invertible matrices forms a group under matrix multiplication.
11.Prove that an isomorphism preserves linear independence of vectors.
11. Given an inner product space V , demonstrate that the map $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}^{*}$ defined by $T(v)(f)=f(v)$ is an isomorphism.
13.Find the dual basis β^{*} for the basis $\beta=\{\mathrm{v} 1, \mathrm{v} 2, \mathrm{v} 3\}$ of a vector space V .
14.If $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ is an isomorphism, what can you say about the dimensions of V and W ?
12. Prove that if T is a linear transformation and $\operatorname{dim}(\mathrm{V})=\operatorname{dim}(\mathrm{W})$, then T is injective if and only if it is surjective.
16.Derive the expression for the change of coordinate matrix P when transitioning between bases β and γ.
13. Given a subspace W of a vector space V , find the annihilator of W : $\operatorname{Ann}(\mathrm{W})$.
14. Determine whether the linear operator T is diagonalizable: $T(x, y)=(3 x+y, x+$ $3 y$).
15. Prove that eigenvectors corresponding to distinct eigenvalues of a linear operator are linearly independent.
16. Show that the matrix $\mathrm{A}=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$ is diagonalizable.
17. Given a linear operator T , find its eigenspace $\mathrm{E}(\lambda)$ corresponding to the eigenvalue λ.
22.Prove or disprove: The eigenvalues of a self-adjoint linear operator are always real.
23.Verify the Cauchy-Schwarz inequality for vectors u and v in an inner product space.
24.Show that an inner product space is a normed vector space, and derive the properties of the induced norm.
25.Prove that the orthogonal complement of the null space of a matrix A is the row space of its transpose: $(\mathrm{N}(\mathrm{A}))^{\wedge} \perp=\mathrm{R}\left(\mathrm{A}^{\wedge} \mathrm{T}\right)$.
18. Show that the adjoint of the adjoint of a linear operator is the operator itself: $\left(\mathrm{T}^{*}\right)^{*}=$ T.
27.Prove that the sum of orthogonal projections onto mutually orthogonal subspaces is the same as the projection onto their direct sum.
19. Given a self-adjoint linear operator T , show that its eigenvalues are real and its eigenvectors are orthogonal.
29.Derive the expression for the least squares solution x * of the system $\mathrm{Ax}=\mathrm{b}$.
30.Prove that if T is a normal operator, then T and its adjoint $\mathrm{T} *$ commute: $\mathrm{TT}^{*}=\mathrm{T} * \mathrm{~T}$.
31.Show that every self-adjoint operator is normal, but not every normal operator is self-adjoint.

6/7 marks questions

1. Prove that the union of two subspaces is not necessarily a subspace. Provide a counterexample.
2. Consider a vector space V over a field F. Define and prove the properties of a direct sum of subspaces U and W of V.
3. Given a set of vectors $\{\mathrm{v} 1, \mathrm{v} 2, \ldots, \mathrm{vn}\}$, determine whether they form a basis for the vector space V . If not, find a basis for the span of the vectors.
4. Let $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ be a linear transformation. Prove that the null space of T , denoted as $\mathrm{N}(\mathrm{T})$, is a subspace of V .
5. Show that if $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ is an isomorphism, then its inverse $\mathrm{T}^{\wedge}(-1): \mathrm{W} \rightarrow \mathrm{V}$ is also an isomorphism.
6. Prove that the union of two subspaces is a subspace if and only if one subspace is contained within the other.
7. Consider a set of vectors $S=\{v 1, v 2, \ldots, v n\}$. Prove that the span of S is the smallest subspace of V containing all vectors in S .
8. Given a linear transformation $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$, define and prove the rank-nullity theorem using the concepts of rank, nullity, and dimension.
9. Let $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ be a linear transformation. Prove that the null space of T is a subspace of V , and the range of T is a subspace of W .
10.Prove that a linear transformation $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ is injective (one-to-one) if and only if its null space $\mathrm{N}(\mathrm{T})=\{0\}$.
11.Prove that the composition of two isomorphisms between vector spaces is itself an isomorphism.
10. Given a linear transformation $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ and its matrix representation [T] with respect to bases β and γ, derive the matrix representation of $\mathrm{T}^{\wedge}(-1)$.
11. Show that if V is finite-dimensional, then the dual space V^{*} is also finitedimensional, and $\operatorname{dim}\left(V^{*}\right)=\operatorname{dim}(V)$.
12. Given a linear operator T and its matrix representation [T] with respect to an orthogonal basis, prove that the adjoint T^{*} has a diagonal matrix representation.
15.Prove that the product of two self-adjoint operators is self-adjoint if and only if they commute.
13. Given a linear transformation $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ and its matrix representation [T] with respect to bases β and γ, prove that $[\mathrm{T}] \gamma=\mathrm{P}^{\wedge}\{-1\}[\mathrm{T}] \beta \mathrm{P}$, where P is the change of basis matrix.
14. Show that if $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ is an isomorphism, its matrix representation $[\mathrm{T}] \beta \gamma$ with respect to bases β and γ is invertible.
18.Prove that the dual space V^{*} is also a vector space and has the same dimension as V.
15. Given a linear transformation $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ and its adjoint $\mathrm{T}^{*}: \mathrm{W}^{*} \rightarrow \mathrm{~V}^{*}$, prove that $(\mathrm{S} \circ \mathrm{T})^{*}=\mathrm{T}^{*} \circ \mathrm{~S}^{*}$ for any linear transformation $\mathrm{S}: \mathrm{W} \rightarrow \mathrm{X}$.
20.Using the properties of orthogonal projections, prove that every self-adjoint operator is diagonalizable and its eigenvalues are real.
21.Prove that if T is a normal linear operator, then T and its adjoint T^{*} commute.
16. Given a linear operator T and its eigenvectors $\{\mathrm{v} 1, \mathrm{v} 2, \ldots, \mathrm{vn}\}$ corresponding to distinct eigenvalues, prove that they are linearly independent.
17. Show that every inner product space has an orthonormal basis, and use this to establish the existence of a matrix representation of a linear operator with respect to an orthonormal basis.
24.Prove that if A and B are positive definite matrices, then their sum $A+B$ is also positive definite.
18. Using the spectral theorem, prove that a self-adjoint operator T can be orthogonally diagonalized.
19. Consider a linear operator T on a finite-dimensional inner product space V. Prove that T is normal if and only if it can be diagonalized by a unitary matrix.
20. Prove that if a linear operator T has distinct eigenvalues, then its eigenvectors corresponding to distinct eigenvalues are linearly independent.
21. Given an inner product space V and a set of linearly independent vectors $\{\mathrm{v} 1, \mathrm{v} 2, \ldots$, vn \}, construct an orthonormal basis for the subspace spanned by these vectors using the Gram-Schmidt process.
22. Show that the inner product space of continuous functions $[a, b]$ is complete, thus forming a Hilbert space.
30.Prove the parallelogram law for normed vector spaces: $\|x+y\|^{\wedge} 2+\|x-y\|^{\wedge} 2=$ $2\left(\|x\|^{\wedge} 2+\|y\|^{\wedge} 2\right)$.
31.Prove that the orthogonal projection operator P onto a subspace U is self-adjoint and idempotent $\left(\mathrm{P}^{\wedge} 2=\mathrm{P}\right)$.
23. Given an orthogonal basis $\beta=\{\mathrm{v} 1, \mathrm{v} 2, \ldots, \mathrm{vn}\}$ of an inner product space V , derive the expression for the orthogonal projection of a vector v onto the subspace spanned by β.
24. Show that if T is a self-adjoint operator on a finite-dimensional inner product space, then all eigenvalues of T are real.
34.Prove that an orthogonal matrix is invertible and its inverse is also orthogonal.
25. Use the spectral theorem to prove that a normal operator T can be unitarily diagonalized.
36.Prove that the orthogonal complement $U \perp$ of a subspace U is indeed a subspace and that $V=U \bigoplus U \perp$.
26. Given an inner product space V , show that the orthogonal projection operator P onto a closed subspace U is self-adjoint and idempotent $\left(\mathrm{P}^{\wedge} 2=\mathrm{P}\right)$.
38.Prove that for a self-adjoint operator T on a finite-dimensional inner product space V , the eigenvectors corresponding to distinct eigenvalues are orthogonal.
27. Given a linear operator T on a finite-dimensional inner product space V , prove that T is self-adjoint if and only if its matrix representation [T] with respect to an orthonormal basis is a Hermitian matrix.
40.Prove the spectral theorem for self-adjoint operators: Every self-adjoint operator on a finite-dimensional inner product space is diagonalizable and its eigenvalues are real.
