## GOVT.(AUTO) COLLEGE ROURKELA

## Sub- Mathematics,Paper-C-2

Q. 1 Answer the followings
(a) If p and q are two statements then $\mathrm{p} \rightarrow \mathrm{q}$ is equivalent to
(b) The contrapositive of the inverse $\mathrm{p} \rightarrow \sim \mathrm{q}$ is
(c) The statement $\mathrm{p} \rightarrow(\mathrm{q} \rightarrow \mathrm{p})$ is equivalent to
(d)If $\varnothing$ denotes the empty set then $p(p(p(\varnothing))=$
(e)Out of 200 students in a class, 120 passed in physics, 140 in mathematics, 40 failed in both subjects then number of students passed in both
(f)If $\mathrm{f}(\mathrm{x})=\cos (\log \mathrm{x})$ then find $\mathrm{f}\left(\frac{x}{y}\right)+\mathrm{f}\left(\frac{y}{x}\right)$
(g)If $g(x)=x^{2}+x-2$ and $\frac{1}{2}(g o f)(x)=2 x^{2}-5 x+2$ find $f(x)$
(h)Define null graph.
(i) Define Plannar graph.
(j)If a set has n elements then number of elements from A to $\mathrm{A}=$
(k)Define connected graph.
(l) Define bijective mapping
(m) Every function is a relation (T/F)
(m)Define pigeonhole principle.
(o) Sum of degrees of all the vertices is equal to
(p)Define complete graph.
(q) A function which is one-one and onto is called
(r) write the condition for a valid statement.
(s) If $f$ is one-one and $g$ is onto then gof is
( t )If $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are any three sets then $(\mathrm{A}-\mathrm{B}) \times \mathrm{C}=$
Q.No-2
(a) In how many ways can three letters be posted in six letter boxes.
(b)Give an example of a relation which is partial ordering.
(c)Write the quotient and remainder when -400 is divided by -13 .
(d)The remainder when $2^{6}-1$ is divisible by 7 .
(e)If $\mathrm{A}=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$ Find the value of $\mathrm{A}^{2}-2 \mathrm{~A}+\mathrm{I}$
(d)If $\mathrm{A}=\mathrm{A}^{-1}$ then find the value of $\mathrm{A}^{2}$
(e)Find the sum of eigen values of $A=\left[\begin{array}{lll}1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1\end{array}\right]$
(f) If $A=\left[\begin{array}{lll}6 & 1 & 4 \\ 2 & 3 & 1 \\ 1 & 3 & 7\end{array}\right]$ then find trace of $A$
(g) If $\mathrm{C}(\mathrm{n} 2)=56$ find the value of n .
(f) Define bi-partite graph.
(h)Find the minimum number of edges in a connected graph with n-vertices.
(i)Find the rank of the matrix $A=\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}\right]$
(j) Define rank of matrix.
Q.No-3
(a) Find the characteristics equation of the matrix $\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3\end{array}\right]$
(b)Write short notes on
(i)Incidence matrix (ii) Adjacency matrix (iii)Hamiltonian path
(c)State and prove Euler's formula
(d)Find a $2 \times 2$ matrix B such that $B\left[\begin{array}{ll}1 & 2 \\ 1 & 4\end{array}\right]=\left[\begin{array}{ll}6 & 0 \\ 0 & 6\end{array}\right]$
(e) Define isomorphic graph. Write the condition for two graph two be isomorphic.
(f)A connected planar graph has 10 vertices of degree 3 . Into how many regions does a representation of
this planar graph splits the plane.
(g)Find the characteristics polynomial, characteristics equation and eigen values of the $\left[\begin{array}{ll}2 & 7 \\ 7 & 2\end{array}\right]$
(h) Test the consistency of the equation and solve $5 x+3 y+2 z=1,3 x+2 y+7 z=4,4 x-2 y+5 z=8$
(i)Find the inverse of $\mathrm{A}=\left[\begin{array}{lll}1 & 0 & 3 \\ 0 & 2 & 6 \\ 2 & 0 & 3\end{array}\right]$ by elementary row operation.
(j)Find the rank of the matrix $\left[\begin{array}{llll}1 & 0 & 1 & 0 \\ 2 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1\end{array}\right]$
Q.No-4
(a)How many solutions does the equation $\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}=11$ have, where $\mathrm{x}_{1}, \mathrm{x}_{2}$ and $\mathrm{x}_{3}$ are non-negative Integers?
(b) How many different strings can be made by reordering the letters of the word SUCCESS.
(c)Find all solutions of the recurrence relations $a_{n}=6 a_{n-1}-11 a_{n-2}+6 a_{n-3}$ with initial condition $a_{0}=$ $2, a_{1}$
$=5$ and $\mathrm{a}_{2}=15$.
(d)Use generating function to solve recurrence relation $a_{k}=5 a_{k-1}-6 a_{k-2}$ with initial condition $a_{0}=2$, $\mathrm{a}_{1}$ $=5$.
(e)Reduce to echelon form and find its $\operatorname{rank}\left[\begin{array}{ccc}1 & 3 & 5 \\ 2 & 1 & 2 \\ 0 & 5 & 12\end{array}\right]$
(f) Test the consistency and solve $\mathrm{x}+\mathrm{y}+\mathrm{z}=-11,6 \mathrm{x}+20 \mathrm{y}-3 \mathrm{z}=-4,-\mathrm{x}-4 \mathrm{y}+9 \mathrm{z}=18$
(g) Find the rank of the matrix $A=\left[\begin{array}{cccc}1 & 0 & 1 & 1 \\ 3 & 2 & 5 & 1 \\ 0 & 4 & 4 & -1\end{array}\right]$ by echelon form.
(h)If $\mathrm{A}=\left[\begin{array}{lll}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right]$ prove that $\mathrm{A}^{3}=\mathrm{A}^{-1}$
(i) If $\mathrm{A}=\left[\begin{array}{rr}2 & 3 \\ 1 & -4\end{array}\right], \mathrm{B}=\left[\begin{array}{cc}1 & -2 \\ -1 & 3\end{array}\right]$ verify that $(\mathrm{AB})^{\mathrm{T}}=\mathrm{B}^{\mathrm{T}} \mathrm{A}^{\mathrm{T}}$
(j)Evaluate $A^{2}-3 A+9 I$ if $A=\left[\begin{array}{ccc}1 & -2 & 3 \\ 2 & 3 & -1 \\ -3 & 1 & 2\end{array}\right]$
$\qquad$

