Government (Auto.) college, Rourkela SUBJECT-STATISTICS

PAPER- P-301

SHORT TYPE OUESTION:-

1. Cluster analysis is used for \qquad .
2. Define Sample mean vector?
3. Define Orthogonal factor model?
4. Define dispersion matrix?
5. Define principal component analysis?
6. Define canonical correlation and variates?
7. If $X \sim N p(\mu, \Sigma)$ then $X+d$ follows \qquad .
8. Let A be the matrix of constants of order $m \times p$ and given that rank(A)=m then the probability distribution of $A X$ is \qquad .
9. The exponent of multivariate normal density function follows \qquad .
10. When referring to a multivariate random variable X, then matrix \sum refers to the
\qquad matrix
11. Let h be any fixed row vector of order $n \times 1$ and independently distributed with matrix D of order $n \times n$ then the what is the conditional distribution of $h^{\prime} \mathrm{Dh} / \mathrm{h}^{\prime} \sum \mathrm{h}$?
12. The two vectors $X 1$ and $X 2$ are independent iff \qquad .
13. The \qquad matrix of a multivariate random variable is always symmetric.
14. The matrix $S /(n-1)$ is a biased estimate of the variance-covariance matrix of the multivariate population. (true/false)
15. The probability distribution is said to be multivariate normal iff every linear combination of X is \qquad _.
16. Let $X_{p \times n}$ is random sample from $N(\mu, \Sigma)$. The distribution of $S=\Sigma(X-E(X))^{\prime}(X-E(X))$ is \qquad .
17. Hotelling $\mathrm{T}^{\wedge} 2$ test is generalization of \qquad .
18. Define Mahalnobis D^{2} statistic
19. Define Misclassification error
20. Define Fisher discriminant function.
21. A p-variate normal distribution is said to be non-singular if \qquad

Long-Type Questions:

1. State and prove that any two properties of Principal Component Analysis.
2. What are Principal Components? What purpose do they serve? Determine the first principal component and its variance when
$\begin{array}{lll}2 & 1 & 1\end{array}$
$\Sigma=1 \quad 1 \quad 1$
112
3. Let X of order $P \times 1$ has mean μ and covariance matrix \sum. Obtain K-principal components of standardized vector Z of X.
4. Define canonical correlations and canonical variables. Derive the first canonical correlation coefficient and the corresponding canonical variables.
5. Let $X \sim N p(\mu, \Sigma)$. A random sample of size $n=5$ is collected and shown below:
$X=\left[\begin{array}{ccc}9 & 12 & 3 \\ 2 & 8 & 4 \\ 6 & 6 & 0 \\ 5 & 4 & 2 \\ 8 & 10 & 1\end{array}\right]$. Compute:
i) Mean vector for the data set ii) Covariance matrix of X iii) Correlation matrix of X.
6. State and prove relation between multivariate normal and $\chi 2$ distribution.
7. Identify the sampling distribution of maximum likelihood estimators of multivariate normal distribution.Show that these maximum likelihood estimators are independently distributed.
8. Derive moment generating function and characteristic function for multivariate normal distribution.
9. Define multivariate normal distribution. Write probability density function of multivariate normal distribution
10. Let $\mathrm{X} 1, \mathrm{X} 2, \ldots . \mathrm{Xn}$ be a random sample of size n from $\mathrm{Np}(\mu, \Sigma)$. Find maximum likelihood estimator of μ and Σ based on these n observations.
11. Let $X \sim N p(\mu, \Sigma)$ Obtain sufficient statistic for μ and Σ where (μ, Σ) are unknown.
12. Derive the characteristic function of multivariate normal distribution from its probability density function.
13. Let $X \sim \operatorname{Np}(\mu, \Sigma)$. find the distribution of $(A x+b)$ where $A k x p$ matrix of constants with $\mathrm{k} \leq \mathrm{p}$ and $\mathrm{bk} \times 1$ vector of constant.
14. Let $X \sim \operatorname{Np}(\mu, \Sigma)$ with $\mu^{\prime}=[2,-1,1]$ and $\Sigma=\left[\begin{array}{lll}2 & 2 & 2 \\ & 4 & 3 \\ & & 3\end{array}\right]$
i. Find the distribution of $\left[X_{1}+3 X_{2}, 3 X_{3}\right]^{\prime}$
ii. Find the conditional distribution of $X_{1}+3 X_{2}$ given $3 X_{3}=2$
iii. Find a 2×1 vector b such that X_{2} and $X_{2}-b^{\prime}\left[X_{1}, X_{3}\right]^{\prime}$ are independent.
15. Let $X_{1}, X_{2}, X_{3}, X_{4}$ and X_{5} be independent and identically distributed random vectors with mean vector μ and covariance matrix \sum. Find the mean vector and covariance
matrices for each of the two linear combinations of random vectors given below in terms of μ and Σ,
$\frac{1}{5} X_{1}+\frac{1}{5} X_{2}+\frac{1}{5} X_{3}+\frac{1}{5} X_{4}+\frac{1}{5} X_{5}$ $X_{1}-X_{2}+X_{3}-X_{4}+X_{5}$
Also obtain the covariance between the two linear combinations of random vectors.
16. If $A \sim W p(n, \Sigma)$ then $|A| /|\Sigma|$ is distributed as product of p independent chi-square variate with d.f.n, $n-1, \ldots . N-p+1$.
17. Define Hotelling T^{2}. State with two examples the uses of Hotelling's T^{2}
18. Define Hotelling T^{2} and show that it is invariant under non-singular linear transformation.
19. Let $Z \sim N p(0, \Sigma)$ and C has the Wishart distribution then $n-p+1 X C^{-1} X \sim F_{p, n-p+1}$.Derive the distribution of T^{2} under the null hypothesis $H_{0}: \mu=\mu_{0}$
20. Describe Characteristic function of Wishart distribution.
21. Define Wishart Matrix. State and prove any two important properties of Wishart distribution.
22. Define Wishart distribution. State and prove the additive property of canonical wishart distribution.
23. State the density function of the Wishart distribution and identify its parameter.
24. Define the Wishart distribution and describe how it generalizes the chi-square distribution
25. Derive relationship between Hotelling T2 and Mahalonobis distance.
26. show that hotelling T^{2} is in variant under Non-singular transformation.
27. Derive Fisher's Discriminant function to discriminate between two populations. State the assumptions clearly.
28. Define the problem of classifying an observation into one of the two populations.
29. Define linear discriminant function and probabilities of misclassification
30. Mention any two properties of multivariate normal distribution.
31. Explain the use of partial and multiple correlation coefficients.
32. Outline the use of discriminant analysis.
33. What are canonical correlation coefficients and canonical variables?
34. Write down any four similarity measures used in cluster analysis.
35. Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent $N(0,1)$ random variables.Show that $X^{\prime} A X$ is chisquare if A is idempotent, where $X=\left(X_{1}, X_{2}, \ldots, X_{n}\right)^{\prime}$.
36. How will you test the equality of covariance matrices of two multivariate normal distributions on the basis of independent samples drawn from two populations?
37. a) What are principal components?. Outline the procedure to extract principal components from a given covariance matrix
38. Define partial correlation between X_{i} and X_{j}.Also prove that $r_{12.3}=\left(r_{12}-r_{13} r_{23}\right) /\left\{\sqrt{ }\left(1-r^{2}{ }_{23}\right) \sqrt{ }\left(1-r^{2}{ }_{13}\right)\right\}$
39. Explain the method of extracting canonical correlations and their variables from a dispersion matrix.
40. Describe canonical variable and canonical correlations. State and prove any two properties of canonical variables.
41. Point out similarities and dissimilarities between principal component analysis and factor analysis.
42. Based on random sample of size n from $\mathrm{Np}(\mu, \Sigma)$. derive an expression for MLE of Σ.
43. Show that the principal components are uncorrelated and have variances equal to the eigen values of \sum.
44. Write a note on cluster analysis. Describe a method of forming clusters from given observations by using a distance function.
45. Describe minimum ECM rule. Derive the same to discriminate between and population.
